{"title":"\"Large\" strange attractors in the unfolding of a heteroclinic attractor","authors":"Alexandre A. P. Rodrigues","doi":"10.3934/dcds.2021193","DOIUrl":null,"url":null,"abstract":"We present a mechanism for the emergence of strange attractors in a one-parameter family of differential equations defined on a 3-dimensional sphere. When the parameter is zero, its flow exhibits an attracting heteroclinic network (Bykov network) made by two 1-dimensional connections and one 2-dimensional separatrix between two saddles-foci with different Morse indices. After slightly increasing the parameter, while keeping the 1-dimensional connections unaltered, we concentrate our study in the case where the 2-dimensional invariant manifolds of the equilibria do not intersect. We will show that, for a set of parameters close enough to zero with positive Lebesgue measure, the dynamics exhibits strange attractors winding around the \"ghost'' of a torus and supporting Sinai-Ruelle-Bowen (SRB) measures. We also prove the existence of a sequence of parameter values for which the family exhibits a superstable sink and describe the transition from a Bykov network to a strange attractor.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present a mechanism for the emergence of strange attractors in a one-parameter family of differential equations defined on a 3-dimensional sphere. When the parameter is zero, its flow exhibits an attracting heteroclinic network (Bykov network) made by two 1-dimensional connections and one 2-dimensional separatrix between two saddles-foci with different Morse indices. After slightly increasing the parameter, while keeping the 1-dimensional connections unaltered, we concentrate our study in the case where the 2-dimensional invariant manifolds of the equilibria do not intersect. We will show that, for a set of parameters close enough to zero with positive Lebesgue measure, the dynamics exhibits strange attractors winding around the "ghost'' of a torus and supporting Sinai-Ruelle-Bowen (SRB) measures. We also prove the existence of a sequence of parameter values for which the family exhibits a superstable sink and describe the transition from a Bykov network to a strange attractor.