{"title":"Tunable electronic structures and interface contact in graphene/C3N van der Waals heterostructures","authors":"Huang Min, Li ZhanHai, Cheng Fang","doi":"10.7498/aps.72.20230318","DOIUrl":null,"url":null,"abstract":"Graphene-based van der Waals heterojunctions can not only modulate the electronic properties of graphene but also retain the superior properties of the original monolayer. In this paper, the structure, electrical contact types, electronic and optical properties of Graphene/C3N van der Waals heterojunctions are systematically investigated based on first-principles calculations. We find that there is a p-type Schottky contact of only 0.039 eV in the Graphene/C3N van der Waals heterojunctions at the equilibrium state. The external electric field can adjust the interface contact type, from p-type to n-type schottky contact, or from p-type schottky contact to ohmic contact. The vertical strain not only opens a nonnegligible band gap of 360 meV at the Dirac cone of Graphene in Graphene/C3N van der Waals heterojunctions, but also modulates the band gap of C3N in the heterojunctions. Moreover, both the doping type and concentration of the carrier can be effectively tuned by the applied electric field and the vertical strain. The increase in carrier concentration is more pronounced by the applied electric field. Compared with the pristine monolayer Graphene and monolayer C3N, the optical response range and the light absorption rate of Graphene/C3N van der Waals heterojunctions are enhanced. Main absorption peak in the spectrum up to 106 cm-1. These results not only provide valuable theoretical guidance for the design of Schottky-based Graphene/C3N van der Waals heterojunctions devices, but also further explore the potential of heterojunctions for further applications in optoelectronic nanodevices and field-effect transistor devices.","PeriodicalId":6995,"journal":{"name":"物理学报","volume":"84 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7498/aps.72.20230318","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene-based van der Waals heterojunctions can not only modulate the electronic properties of graphene but also retain the superior properties of the original monolayer. In this paper, the structure, electrical contact types, electronic and optical properties of Graphene/C3N van der Waals heterojunctions are systematically investigated based on first-principles calculations. We find that there is a p-type Schottky contact of only 0.039 eV in the Graphene/C3N van der Waals heterojunctions at the equilibrium state. The external electric field can adjust the interface contact type, from p-type to n-type schottky contact, or from p-type schottky contact to ohmic contact. The vertical strain not only opens a nonnegligible band gap of 360 meV at the Dirac cone of Graphene in Graphene/C3N van der Waals heterojunctions, but also modulates the band gap of C3N in the heterojunctions. Moreover, both the doping type and concentration of the carrier can be effectively tuned by the applied electric field and the vertical strain. The increase in carrier concentration is more pronounced by the applied electric field. Compared with the pristine monolayer Graphene and monolayer C3N, the optical response range and the light absorption rate of Graphene/C3N van der Waals heterojunctions are enhanced. Main absorption peak in the spectrum up to 106 cm-1. These results not only provide valuable theoretical guidance for the design of Schottky-based Graphene/C3N van der Waals heterojunctions devices, but also further explore the potential of heterojunctions for further applications in optoelectronic nanodevices and field-effect transistor devices.
石墨烯基范德华异质结不仅可以调制石墨烯的电子特性,还可以保留原有单层石墨烯的优越性能。本文基于第一性原理计算系统地研究了石墨烯/C3N范德华异质结的结构、电接触类型、电子和光学性质。我们发现石墨烯/C3N范德华异质结在平衡状态下存在一个p型肖特基接触,只有0.039 eV。外加电场可以调节界面接触类型,从p型肖特基接触到n型肖特基接触,或从p型肖特基接触到欧姆接触。在石墨烯/C3N范德华异质结中,垂直应变不仅在石墨烯的狄拉克锥上打开了一个不可忽略的360 meV带隙,而且还调节了C3N在异质结中的带隙。此外,外加电场和垂直应变可以有效地调节载流子的掺杂类型和浓度。外加电场使载流子浓度的增加更为明显。与原始单层石墨烯和单层C3N相比,石墨烯/C3N van der Waals异质结的光响应范围和光吸收率都有所提高。光谱中主要吸收峰高达106 cm-1。这些结果不仅为基于schottkey的石墨烯/C3N范德华异质结器件的设计提供了有价值的理论指导,而且进一步探索了异质结在光电纳米器件和场效应晶体管器件中的进一步应用潜力。
期刊介绍:
Acta Physica Sinica (Acta Phys. Sin.) is supervised by Chinese Academy of Sciences and sponsored by Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. Published by Chinese Physical Society and launched in 1933, it is a semimonthly journal with about 40 articles per issue.
It publishes original and top quality research papers, rapid communications and reviews in all branches of physics in Chinese. Acta Phys. Sin. enjoys high reputation among Chinese physics journals and plays a key role in bridging China and rest of the world in physics research. Specific areas of interest include: Condensed matter and materials physics; Atomic, molecular, and optical physics; Statistical, nonlinear, and soft matter physics; Plasma physics; Interdisciplinary physics.