Ruling invariants for Legendrian graphs

Pub Date : 2019-11-20 DOI:10.4310/jsg.2022.v20.n1.a2
B. An, Youngjin Bae, Tam'as K'alm'an
{"title":"Ruling invariants for Legendrian graphs","authors":"B. An, Youngjin Bae, Tam'as K'alm'an","doi":"10.4310/jsg.2022.v20.n1.a2","DOIUrl":null,"url":null,"abstract":"We define ruling invariants for even-valence Legendrian graphs in standard contact three-space. We prove that rulings exist if and only if the DGA of the graph, introduced by the first two authors, has an augmentation. We set up the usual ruling polynomials for various notions of gradedness and prove that if the graph is four-valent, then the ungraded ruling polynomial appears in Kauffman-Vogel's graph version of the Kauffman polynomial. Our ruling invariants are compatible with certain vertex-identifying operations as well as vertical cuts and gluings of front diagrams. We also show that Leverson's definition of a ruling of a Legendrian link in a connected sum of $S^1 \\times S^2$'s can be seen as a special case of ours.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We define ruling invariants for even-valence Legendrian graphs in standard contact three-space. We prove that rulings exist if and only if the DGA of the graph, introduced by the first two authors, has an augmentation. We set up the usual ruling polynomials for various notions of gradedness and prove that if the graph is four-valent, then the ungraded ruling polynomial appears in Kauffman-Vogel's graph version of the Kauffman polynomial. Our ruling invariants are compatible with certain vertex-identifying operations as well as vertical cuts and gluings of front diagrams. We also show that Leverson's definition of a ruling of a Legendrian link in a connected sum of $S^1 \times S^2$'s can be seen as a special case of ours.
分享
查看原文
勒让图的统治不变量
定义了标准接触三维空间中偶价勒让图的控制不变量。我们证明当且仅当前两位作者引入的图的DGA有增广时,判定存在。我们建立了各种等级概念的常用统治多项式,并证明了如果图是四价的,则未分级统治多项式出现在Kauffman- vogel的Kauffman多项式的图版本中。我们的统治不变量与某些顶点识别操作以及前图的垂直切割和粘合兼容。我们还证明了Leverson关于S^1 * S^2$的连通和中的Legendrian连杆定则的定义可以看作是我们的一个特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信