{"title":"Integration of equation of Toda periodic chain kind","authors":"B. Babajanov, A. B. Khasanov","doi":"10.13108/2017-9-2-17","DOIUrl":null,"url":null,"abstract":"In this work we apply the method of the inverse spectral problem to integrating an equation of Toda periodic chain kind. For the one-band case we write out explicit formulae for the solutions to an analogue of Dubrovin system of equations and thus, for our problem. These solutions are expressed in term of Jacobi elliptic functions.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"24 1","pages":"17-24"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-2-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
In this work we apply the method of the inverse spectral problem to integrating an equation of Toda periodic chain kind. For the one-band case we write out explicit formulae for the solutions to an analogue of Dubrovin system of equations and thus, for our problem. These solutions are expressed in term of Jacobi elliptic functions.