Deep Recurrent Neural Networks with Layer-wise Multi-head Attentions for Punctuation Restoration

Seokhwan Kim
{"title":"Deep Recurrent Neural Networks with Layer-wise Multi-head Attentions for Punctuation Restoration","authors":"Seokhwan Kim","doi":"10.1109/ICASSP.2019.8682418","DOIUrl":null,"url":null,"abstract":"Punctuation restoration is a post-processing task of automatic speech recognition to generate the punctuation marks on un-punctuated transcripts. This paper proposes a deep recurrent neural network architecture with layer-wise multi-head attentions towards better modelling of the contexts from a variety of perspectives in putting punctuations by human writers. The experimental results show that our proposed model significantly outperforms previous state-of-the-art methods in punctuation restoration performances on IWSLT dataset.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"28 1","pages":"7280-7284"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Punctuation restoration is a post-processing task of automatic speech recognition to generate the punctuation marks on un-punctuated transcripts. This paper proposes a deep recurrent neural network architecture with layer-wise multi-head attentions towards better modelling of the contexts from a variety of perspectives in putting punctuations by human writers. The experimental results show that our proposed model significantly outperforms previous state-of-the-art methods in punctuation restoration performances on IWSLT dataset.
基于分层多头部的深度递归神经网络的标点恢复
标点恢复是语音自动识别的一项后处理任务,目的是在未加标点符号的文本上生成标点符号。本文提出了一种深度递归神经网络架构,该架构具有分层式的多头关注,旨在从人类作者放置标点的各种角度更好地建模上下文。实验结果表明,我们提出的模型在IWSLT数据集上的标点恢复性能明显优于现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信