{"title":"Simulation of high speed rotating dynamics in constrained mechanical systems","authors":"Ping Zhou, H. Ren","doi":"10.1177/14644193221115013","DOIUrl":null,"url":null,"abstract":"High-speed rotating motion is an important issue in mechanical systems such as propellers or turbine blades. Difficulties occurs in the simulation of high-speed rotating dynamics, resulting in unexpected and unreliable numerical results. For example, the calculated angular velocity usually doesn’t increase linearly but grows until reaching a saturation value under a constant torque. This phenomenon will be more complex in constrained mechanical systems, especially in a flexible system. This work aims to address this issue that arises in the simulation of high-speed rotating dynamics, where a new formulation of non-linear floating frame of reference formulation is proposed to solve constrained flexible system. Pros and cons of various numerical techniques in the field of multibody system dynamics are compared and discussed here. These techniques involve the Euler parameter formulation, local rotational parameters, minimal coordinate set approach and the nonlinear elastic formulation. Cases with constrained rigid or flexible system are studied here. This work provides an insight into practical simulations of high-speed rotating mechanical systems.","PeriodicalId":54565,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","volume":"20 1","pages":"503 - 510"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14644193221115013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-speed rotating motion is an important issue in mechanical systems such as propellers or turbine blades. Difficulties occurs in the simulation of high-speed rotating dynamics, resulting in unexpected and unreliable numerical results. For example, the calculated angular velocity usually doesn’t increase linearly but grows until reaching a saturation value under a constant torque. This phenomenon will be more complex in constrained mechanical systems, especially in a flexible system. This work aims to address this issue that arises in the simulation of high-speed rotating dynamics, where a new formulation of non-linear floating frame of reference formulation is proposed to solve constrained flexible system. Pros and cons of various numerical techniques in the field of multibody system dynamics are compared and discussed here. These techniques involve the Euler parameter formulation, local rotational parameters, minimal coordinate set approach and the nonlinear elastic formulation. Cases with constrained rigid or flexible system are studied here. This work provides an insight into practical simulations of high-speed rotating mechanical systems.
期刊介绍:
The Journal of Multi-body Dynamics is a multi-disciplinary forum covering all aspects of mechanical design and dynamic analysis of multi-body systems. It is essential reading for academic and industrial research and development departments active in the mechanical design, monitoring and dynamic analysis of multi-body systems.