Unsupervised multiview learning with partial distribution information

Shashini De Silva, Jinsub Kim, R. Raich
{"title":"Unsupervised multiview learning with partial distribution information","authors":"Shashini De Silva, Jinsub Kim, R. Raich","doi":"10.1109/MLSP.2017.8168138","DOIUrl":null,"url":null,"abstract":"We consider a training data collection mechanism wherein, instead of annotating each training instance with a class label, additional features drawn from a known class-conditional distribution are acquired concurrently. Considering true labels as latent variables, a maximum likelihood approach is proposed to train a classifier based on these unlabeled training data. Furthermore, the case of correlated training instances is considered, wherein latent label variables for subsequently collected training instances form a first-order Markov chain. A convex optimization approach and expectation-maximization algorithms are presented to train classifiers. The efficacy of the proposed approach is validated using the experiments with the iris data and the MNIST handwritten digit data.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a training data collection mechanism wherein, instead of annotating each training instance with a class label, additional features drawn from a known class-conditional distribution are acquired concurrently. Considering true labels as latent variables, a maximum likelihood approach is proposed to train a classifier based on these unlabeled training data. Furthermore, the case of correlated training instances is considered, wherein latent label variables for subsequently collected training instances form a first-order Markov chain. A convex optimization approach and expectation-maximization algorithms are presented to train classifiers. The efficacy of the proposed approach is validated using the experiments with the iris data and the MNIST handwritten digit data.
具有部分分布信息的无监督多视图学习
我们考虑了一种训练数据收集机制,其中,从已知的类条件分布中获取额外的特征,而不是用类标签注释每个训练实例。将真标签作为潜在变量,提出了一种基于这些无标签训练数据的最大似然方法来训练分类器。此外,考虑了相关训练实例的情况,其中随后收集的训练实例的潜在标签变量形成一阶马尔可夫链。提出了凸优化方法和期望最大化算法来训练分类器。通过虹膜数据和MNIST手写数字数据的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信