{"title":"Degradation Analysis of Anti-Soiling Coatings in Solar Glass with AFM Phase shift data The use of Data Analytical Methods","authors":"Luis Blanco, E. Klimm, K. Weiß","doi":"10.1109/PVSC45281.2020.9300561","DOIUrl":null,"url":null,"abstract":"Solar glass surface degradation caused by environmental factors (such as high temperatures, high UV irradiation, humidity etc.) is a phenomenon that affects the performance of photovoltaic modules. Several different solar glass samples with different anti-soiling coatings exposed to indoor and outdoor degradation, were measured with Atomic Force Microscopy (AFM) to obtain high-resolution information of signal phase shift. This study aims to analyze the phase shift set of data given by the Atomic Force Microscopy to understand if there is a correlation with the degradation effects on the surface of solar glasses caused by environmental factors and to define a methodology for phase shift data analysis processing. Three different methodologies were established. Degradation patterns and changes in the distributions of the data across the different samples are noticeable in all of the methodologies and although the methodologies are not able to represent the complexity of the phase shift data in its entirety, they are able to show changes on phase in different glass surfaces and show the potential of phase shift data analysis.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"33 1","pages":"1584-1588"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Solar glass surface degradation caused by environmental factors (such as high temperatures, high UV irradiation, humidity etc.) is a phenomenon that affects the performance of photovoltaic modules. Several different solar glass samples with different anti-soiling coatings exposed to indoor and outdoor degradation, were measured with Atomic Force Microscopy (AFM) to obtain high-resolution information of signal phase shift. This study aims to analyze the phase shift set of data given by the Atomic Force Microscopy to understand if there is a correlation with the degradation effects on the surface of solar glasses caused by environmental factors and to define a methodology for phase shift data analysis processing. Three different methodologies were established. Degradation patterns and changes in the distributions of the data across the different samples are noticeable in all of the methodologies and although the methodologies are not able to represent the complexity of the phase shift data in its entirety, they are able to show changes on phase in different glass surfaces and show the potential of phase shift data analysis.