Fabrication and characterization of a micromechanical sensor for differential detection of nanoscale motions

C. Savran, A. Sparks, J. Sihler, Jian Li, Wangsong Wu, Dean Berlin, T. Burg, J. Fritz, M. Schmidt, S. Manalis
{"title":"Fabrication and characterization of a micromechanical sensor for differential detection of nanoscale motions","authors":"C. Savran, A. Sparks, J. Sihler, Jian Li, Wangsong Wu, Dean Berlin, T. Burg, J. Fritz, M. Schmidt, S. Manalis","doi":"10.1109/JMEMS.2002.805057","DOIUrl":null,"url":null,"abstract":"We have micromachined a mechanical sensor that uses interferometry to detect the differential and absolute deflections of two adjacent cantilevers. The overall geometry of the device allows simple fluidic delivery to each cantilever to immobilize molecules for biological and chemical detection. We show that differential sensing is 50 times less affected by ambient temperature changes than the absolute, thus enabling a more reliable differentiation between specific cantilever bending and background effects. We describe the fabrication process and show results related to the dynamic characterization of the device as a differential sensor. The root-mean-squared (r.m.s.) sensor noise in water and air is /spl sim/1 nm over the frequency range of 0.4-40 Hz. We also find that in air, the deflection resolution is limited only by the cantilever's thermomechanical noise level of 0.008 /spl Aring//Hz/sup 1/2/ over the frequency range of 40-1000 Hz.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2002.805057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

We have micromachined a mechanical sensor that uses interferometry to detect the differential and absolute deflections of two adjacent cantilevers. The overall geometry of the device allows simple fluidic delivery to each cantilever to immobilize molecules for biological and chemical detection. We show that differential sensing is 50 times less affected by ambient temperature changes than the absolute, thus enabling a more reliable differentiation between specific cantilever bending and background effects. We describe the fabrication process and show results related to the dynamic characterization of the device as a differential sensor. The root-mean-squared (r.m.s.) sensor noise in water and air is /spl sim/1 nm over the frequency range of 0.4-40 Hz. We also find that in air, the deflection resolution is limited only by the cantilever's thermomechanical noise level of 0.008 /spl Aring//Hz/sup 1/2/ over the frequency range of 40-1000 Hz.
用于纳米级运动差分检测的微机械传感器的制造与表征
我们用微机械加工了一个机械传感器,它使用干涉测量法来检测两个相邻悬臂的微分和绝对挠度。该装置的整体几何形状允许简单的流体输送到每个悬臂,以固定分子进行生物和化学检测。我们表明,差分传感受环境温度变化的影响比绝对温度变化小50倍,因此能够更可靠地区分特定的悬臂弯曲和背景效应。我们描述了制造过程,并展示了与作为差分传感器的器件的动态特性相关的结果。在0.4-40 Hz的频率范围内,水和空气中的均方根(r.m.s.)传感器噪声为/spl sim/1 nm。我们还发现,在空气中,在40-1000 Hz的频率范围内,悬臂梁的挠度分辨率仅受限于0.008 /spl / Aring//Hz/sup 1/2/ /的热力噪声水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信