{"title":"Enhanced stability of capacitor-current feedback active damping for LCL-filtered grid converters","authors":"Zhen Xin, Xiongfei Wang, P. Loh, F. Blaabjerg","doi":"10.1109/ECCE.2015.7310328","DOIUrl":null,"url":null,"abstract":"The proportional capacitor-current feedback active damping method has been widely used to suppress the LCL-filter resonance. However, the time delay in the damping control loop may lead to non-minimum phase or even unstable responses when the resonance frequency varies in a wide range. To improve the robustness of damping, this paper proposes an improved damping controller with the capacitor current feedback loop, which is based on the second-order generalized integrator, instead of a proportional gain, which can effectively mitigate the detrimental effect of the time delay. Robustness of the proposed method against grid inductance variation is proved by z-domain and s-domain analyses. Finally, experimental results validate the effectiveness of the proposed method on a three-phase grid-connected converter.","PeriodicalId":6654,"journal":{"name":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"52 1","pages":"4729-4736"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2015.7310328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The proportional capacitor-current feedback active damping method has been widely used to suppress the LCL-filter resonance. However, the time delay in the damping control loop may lead to non-minimum phase or even unstable responses when the resonance frequency varies in a wide range. To improve the robustness of damping, this paper proposes an improved damping controller with the capacitor current feedback loop, which is based on the second-order generalized integrator, instead of a proportional gain, which can effectively mitigate the detrimental effect of the time delay. Robustness of the proposed method against grid inductance variation is proved by z-domain and s-domain analyses. Finally, experimental results validate the effectiveness of the proposed method on a three-phase grid-connected converter.