Deep Industrial Image Anomaly Detection: A Survey

ArXiv Pub Date : 2023-01-27 DOI:10.48550/arXiv.2301.11514
Jiaqi Liu, Guoyang Xie, Jingbao Wang, Shangwen Li, Chengjie Wang, Feng Zheng, Yaochu Jin
{"title":"Deep Industrial Image Anomaly Detection: A Survey","authors":"Jiaqi Liu, Guoyang Xie, Jingbao Wang, Shangwen Li, Chengjie Wang, Feng Zheng, Yaochu Jin","doi":"10.48550/arXiv.2301.11514","DOIUrl":null,"url":null,"abstract":"The recent rapid development of deep learning has laid a milestone in industrial Image Anomaly Detection (IAD). In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural network architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the new setting from industrial manufacturing and review the current IAD approaches under our proposed our new setting. Moreover, we highlight several opening challenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at https://github.com/M-3LAB/awesome-industrial-anomaly-detection.","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.11514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The recent rapid development of deep learning has laid a milestone in industrial Image Anomaly Detection (IAD). In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural network architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the new setting from industrial manufacturing and review the current IAD approaches under our proposed our new setting. Moreover, we highlight several opening challenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at https://github.com/M-3LAB/awesome-industrial-anomaly-detection.
深度工业图像异常检测:综述
近年来深度学习的快速发展为工业图像异常检测(IAD)奠定了一个里程碑。在本文中,我们从神经网络架构、监督级别、损失函数、度量和数据集的角度全面回顾了基于深度学习的图像异常检测技术。此外,我们从工业制造中提取了新的设置,并在我们提出的新设置下回顾了当前的IAD方法。此外,我们强调了图像异常检测的几个开放挑战。讨论了在不同监督下具有代表性的网络体系结构的优缺点。最后,对研究结果进行了总结,并指出了未来的研究方向。更多资源请访问https://github.com/M-3LAB/awesome-industrial-anomaly-detection。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信