R. Dabbebi , S. Baklouti , J.L. Barroso de Aguiar , F. Pacheco-Torgal , B. Samet
{"title":"Investigations of geopolymeric mixtures based on phosphate washing waste","authors":"R. Dabbebi , S. Baklouti , J.L. Barroso de Aguiar , F. Pacheco-Torgal , B. Samet","doi":"10.1016/j.stmat.2018.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The extraction of the phosphate ore produces a high amount of waste causing serious environmental problems. This waste, termed as phosphate washing waste, was filtered and dried at 105<!--> <!-->°C for 24<!--> <!-->h to remove the water. The dried waste was milled and then sieved in a 100<!--> <!-->μm sieve. The resulting phosphates washing waste (PWW) particles size are below 70<!--> <!-->μm. The phosphate washing waste was calcined at 700<!--> <!-->°C and 900<!--> <span>°C. Both calcined and uncalcined waste were investigated with X-ray fluorescence (XRF), X-ray powder diffraction (DRX), Fourier transform<span><span><span> infrared (FTIR), simultaneous differential thermal and thermogravimetric analyses (DTA-TG) and particle size analysis. This waste was activated with sodium hydroxide (NaOH) and </span>sodium silicate<span> in order to produce geopolymeric materials. The influence of replacing PWW by 15% of metakaolin was also study. The results show that the highest </span></span>compressive strength is obtained with metakaolin. The results also showed that compressive strength decreased with the increase of NaOH concentration.</span></span></p></div>","PeriodicalId":101145,"journal":{"name":"Science and Technology of Materials","volume":"30 ","pages":"Pages 1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stmat.2018.08.001","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2603636318300526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The extraction of the phosphate ore produces a high amount of waste causing serious environmental problems. This waste, termed as phosphate washing waste, was filtered and dried at 105 °C for 24 h to remove the water. The dried waste was milled and then sieved in a 100 μm sieve. The resulting phosphates washing waste (PWW) particles size are below 70 μm. The phosphate washing waste was calcined at 700 °C and 900 °C. Both calcined and uncalcined waste were investigated with X-ray fluorescence (XRF), X-ray powder diffraction (DRX), Fourier transform infrared (FTIR), simultaneous differential thermal and thermogravimetric analyses (DTA-TG) and particle size analysis. This waste was activated with sodium hydroxide (NaOH) and sodium silicate in order to produce geopolymeric materials. The influence of replacing PWW by 15% of metakaolin was also study. The results show that the highest compressive strength is obtained with metakaolin. The results also showed that compressive strength decreased with the increase of NaOH concentration.