Diffusion problems on fractional nonlocal media

A. Sapora, P. Cornetti, A. Carpinteri
{"title":"Diffusion problems on fractional nonlocal media","authors":"A. Sapora, P. Cornetti, A. Carpinteri","doi":"10.2478/s11534-013-0323-0","DOIUrl":null,"url":null,"abstract":"In this paper, the nonlocal diffusion in one-dimensional continua is investigated by means of a fractional calculus approach. The problem is set on finite spatial domains and it is faced numerically by means of fractional finite differences, both for what concerns the transient and the steady-state regimes. Nonlinear deviations from classical solutions are observed. Furthermore, it is shown that fractional operators possess a clear physical-mechanical meaning, representing conductors, whose conductance decays as a power-law of the distance, connecting non-adjacent points of the body.","PeriodicalId":50985,"journal":{"name":"Central European Journal of Physics","volume":"85 1","pages":"1255-1261"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11534-013-0323-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, the nonlocal diffusion in one-dimensional continua is investigated by means of a fractional calculus approach. The problem is set on finite spatial domains and it is faced numerically by means of fractional finite differences, both for what concerns the transient and the steady-state regimes. Nonlinear deviations from classical solutions are observed. Furthermore, it is shown that fractional operators possess a clear physical-mechanical meaning, representing conductors, whose conductance decays as a power-law of the distance, connecting non-adjacent points of the body.
分数阶非局部介质上的扩散问题
本文用分数阶微积分方法研究了一维连续体中的非局部扩散问题。该问题设置在有限空间域上,并通过分数阶有限差分在数值上处理瞬态和稳态两种情况。观察到与经典解的非线性偏差。此外,分数算子具有明确的物理力学意义,表示导体,其电导率随着距离的幂律而衰减,连接身体的非相邻点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Central European Journal of Physics
Central European Journal of Physics 物理-物理:综合
自引率
0.00%
发文量
0
审稿时长
3.3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信