On the Control Theorem for Fine Selmer Groups and the Growth of Fine Tate-Shafarevich Groups in $\mathbb{Z}_p$-Extensions

IF 0.9 3区 数学 Q2 MATHEMATICS
M. Lim
{"title":"On the Control Theorem for Fine Selmer Groups and the Growth of Fine Tate-Shafarevich Groups in $\\mathbb{Z}_p$-Extensions","authors":"M. Lim","doi":"10.25537/DM.2020V25.2445-2471","DOIUrl":null,"url":null,"abstract":"Let $A$ be an abelian variety defined over a number field $F$. We prove a control theorem for the fine Selmer group of the abelian variety $A$ which essentially says that the kernel and cokernel of the natural restriction maps in a given $\\mathbb{Z}_p$-extension $F_\\infty/F$ are finite and bounded. We emphasise that our result does not have any constraints on the reduction of $A$ and the ramification of $F_\\infty/F$. As a first consequence of the control theorem, we show that the fine Tate-Shafarevich group over an arbitrary $\\mathbb{Z}_p$-extension has trivial $\\Lambda$-corank. We then derive an asymptotic growth formula for the $p$-torsion subgroup of the dual fine Selmer group in a $\\mathbb{Z}_p$-extension. However, as the fine Mordell-Weil group needs not be $p$-divisible in general, the fine Tate-Shafarevich group needs not agree with the $p$-torsion of the dual fine Selmer group, and so the asymptotic growth formula for the dual fine Selmer groups do not carry over to the fine Tate-Shafarevich groups. Nevertheless, we do provide certain sufficient conditions, where one can obtain a precise asymptotic formula.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"49 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.25537/DM.2020V25.2445-2471","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Let $A$ be an abelian variety defined over a number field $F$. We prove a control theorem for the fine Selmer group of the abelian variety $A$ which essentially says that the kernel and cokernel of the natural restriction maps in a given $\mathbb{Z}_p$-extension $F_\infty/F$ are finite and bounded. We emphasise that our result does not have any constraints on the reduction of $A$ and the ramification of $F_\infty/F$. As a first consequence of the control theorem, we show that the fine Tate-Shafarevich group over an arbitrary $\mathbb{Z}_p$-extension has trivial $\Lambda$-corank. We then derive an asymptotic growth formula for the $p$-torsion subgroup of the dual fine Selmer group in a $\mathbb{Z}_p$-extension. However, as the fine Mordell-Weil group needs not be $p$-divisible in general, the fine Tate-Shafarevich group needs not agree with the $p$-torsion of the dual fine Selmer group, and so the asymptotic growth formula for the dual fine Selmer groups do not carry over to the fine Tate-Shafarevich groups. Nevertheless, we do provide certain sufficient conditions, where one can obtain a precise asymptotic formula.
$\mathbb{Z}_p$-扩展中精细Selmer群的控制定理和精细tat - shafarevich群的生长
设$A$是定义在数字字段$F$上的一个阿贝尔变量。我们证明了阿贝尔变量$A$的精细Selmer群的一个控制定理,该定理实质上是说在给定的$\mathbb{Z}_p$ -扩展$F_\infty/F$中自然约束映射的核和核是有限有界的。我们强调,我们的结果对$A$的还原和$F_\infty/F$的分枝没有任何限制。作为控制定理的第一个结论,我们证明了任意$\mathbb{Z}_p$ -扩展上的精细Tate-Shafarevich群具有平凡的$\Lambda$ -corank。然后,我们导出了$\mathbb{Z}_p$ -扩展中对偶精细Selmer群的$p$ -扭转子群的渐近增长公式。然而,由于精细的Mordell-Weil群一般不需要$p$ -可分,精细的Tate-Shafarevich群不需要与对偶精细Selmer群的$p$ -扭转一致,因此对偶精细Selmer群的渐近增长公式不能推广到精细的Tate-Shafarevich群。然而,我们确实提供了一些充分条件,在这些条件下可以得到一个精确的渐近公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信