The ratio and product of the multiplicative Zagreb indices

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
R. Kazemi
{"title":"The ratio and product of the multiplicative Zagreb indices","authors":"R. Kazemi","doi":"10.22052/IJMC.2017.53731.1198","DOIUrl":null,"url":null,"abstract":"‎The first multiplicative Zagreb index $Pi_1(G)$ is equal to the‎ ‎product of squares of the degree of the vertices and the second‎ ‎multiplicative Zagreb index $Pi_2(G)$ is equal to the product of‎ ‎the products of the degree of pairs of adjacent vertices of the‎ ‎underlying molecular graphs $G$‎. ‎Also‎, ‎the multiplicative sum Zagreb index $Pi_3(G)$ is equal to the product of‎ ‎the sums of the degree of pairs of adjacent vertices of $G$‎. ‎In‎ ‎this paper‎, ‎we introduce a new version of the multiplicative sum‎ ‎Zagreb index and study the moments of the ratio and product of ‎all above‎ indices in a randomly chosen molecular graph with tree structure of order $n$. ‏Also, a ‎supermartingale is introduced by ‎‎Doob's supermartingale‎ ‎inequality.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2017.53731.1198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

‎The first multiplicative Zagreb index $Pi_1(G)$ is equal to the‎ ‎product of squares of the degree of the vertices and the second‎ ‎multiplicative Zagreb index $Pi_2(G)$ is equal to the product of‎ ‎the products of the degree of pairs of adjacent vertices of the‎ ‎underlying molecular graphs $G$‎. ‎Also‎, ‎the multiplicative sum Zagreb index $Pi_3(G)$ is equal to the product of‎ ‎the sums of the degree of pairs of adjacent vertices of $G$‎. ‎In‎ ‎this paper‎, ‎we introduce a new version of the multiplicative sum‎ ‎Zagreb index and study the moments of the ratio and product of ‎all above‎ indices in a randomly chosen molecular graph with tree structure of order $n$. ‏Also, a ‎supermartingale is introduced by ‎‎Doob's supermartingale‎ ‎inequality.
相乘的萨格勒布指数的比值和乘积
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *。同样,萨格勒布指数的乘法和$Pi_3(G)$等于$相邻顶点对的度数和的乘积$G$ $。在本文中,我们引入了一个新版本的乘法和萨格勒布指数,并研究了随机选择的n阶树结构分子图中上述所有指数之比和积的矩。此外,一个“超鞅”是由Doob的“超鞅”不等式引入的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信