A twistor transform and normal forms for Cauchy Riemann structures

IF 1.2 1区 数学 Q1 MATHEMATICS
J. Bland, T. Duchamp
{"title":"A twistor transform and normal forms for Cauchy Riemann structures","authors":"J. Bland, T. Duchamp","doi":"10.1515/crelle-2023-0002","DOIUrl":null,"url":null,"abstract":"Abstract We use Hitchin’s twistor transform for two-dimensional projective structures to obtain normal coordinates in a pseudoconcave neighbourhood of an O ⁢ ( 1 ) \\mathcal{O}(1) rational curve; in the construction, we present every such neighbourhood as Q D / F Q_{\\mathbb{D}}/\\mathcal{F} for some holomorphic foliation ℱ, where Q D Q_{\\mathbb{D}} is an open neighbourhood in the standard quadric Q ⊂ P 2 × P 2 Q\\subset\\mathbb{P}^{2}\\times\\mathbb{P}^{2} . As a consequence of the normal coordinates, we obtain a new normal form for Cauchy Riemann structures on the three-sphere that are isotopic to the standard one. We end the paper with explicit calculations for the cases arising from deformations of the normal isolated singularities X ⁢ Y = Z n XY=Z^{n} .","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"12 1","pages":"55 - 103"},"PeriodicalIF":1.2000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0002","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We use Hitchin’s twistor transform for two-dimensional projective structures to obtain normal coordinates in a pseudoconcave neighbourhood of an O ⁢ ( 1 ) \mathcal{O}(1) rational curve; in the construction, we present every such neighbourhood as Q D / F Q_{\mathbb{D}}/\mathcal{F} for some holomorphic foliation ℱ, where Q D Q_{\mathbb{D}} is an open neighbourhood in the standard quadric Q ⊂ P 2 × P 2 Q\subset\mathbb{P}^{2}\times\mathbb{P}^{2} . As a consequence of the normal coordinates, we obtain a new normal form for Cauchy Riemann structures on the three-sphere that are isotopic to the standard one. We end the paper with explicit calculations for the cases arising from deformations of the normal isolated singularities X ⁢ Y = Z n XY=Z^{n} .
柯西黎曼结构的扭或变换和范式
摘要利用二维射影结构的Hitchin扭扭变换,得到了O(1) \数学{O}(1)有理曲线的拟凹邻域内的正坐标;在构造中,我们给出了对于某些全纯叶形(v)的每一个这样的邻域Q D / F Q_{\mathbb{D}}/\mathcal{F},其中Q D Q_{\mathbb{D}}是标准二次曲面Q∧p2 × p2 Q\子集\mathbb{P}^{2}\乘以\mathbb{P}^{2}中的一个开放邻域。作为标准坐标的结果,我们得到了三球上与标准结构同位素的柯西黎曼结构的一种新的标准形式。本文最后给出了由正常孤立奇点X¹Y=Z n Y=Z^{n}的变形引起的情况的显式计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信