Bayesian Kernel Regression for Noisy Inputs Based on Nadaraya-Watson Estimator Constructed from Noiseless Training Data

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ryo Hanafusa, T. Okadome
{"title":"Bayesian Kernel Regression for Noisy Inputs Based on Nadaraya-Watson Estimator Constructed from Noiseless Training Data","authors":"Ryo Hanafusa, T. Okadome","doi":"10.1142/s2424922x20500047","DOIUrl":null,"url":null,"abstract":"In regression for noisy inputs, noise is typically removed from a given noisy input if possible, and then the resulting noise-free input is provided to the regression function. In some cases, however, there is no available time or method for removing noise. The regression method proposed in this paper determines a regression function for noisy inputs using the estimated posterior of their noise-free constituents with a nonparametric estimator for noiseless explanatory values, which is constructed from noiseless training data. In addition, a probabilistic generative model is presented for estimating the noise distribution. This enables us to determine the noise distribution parametrically from a single noisy input, using the distribution of the noise-free constituent of noisy input estimated from the training data set as a prior. Experiments conducted using artificial and real data sets show that the proposed method suppresses the overfitting of the regression function for noisy inputs and the root mean squared errors (RMSEs) of the predictions are smaller compared with those of an existing method.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"137 1","pages":"2050004:1-2050004:17"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424922x20500047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

In regression for noisy inputs, noise is typically removed from a given noisy input if possible, and then the resulting noise-free input is provided to the regression function. In some cases, however, there is no available time or method for removing noise. The regression method proposed in this paper determines a regression function for noisy inputs using the estimated posterior of their noise-free constituents with a nonparametric estimator for noiseless explanatory values, which is constructed from noiseless training data. In addition, a probabilistic generative model is presented for estimating the noise distribution. This enables us to determine the noise distribution parametrically from a single noisy input, using the distribution of the noise-free constituent of noisy input estimated from the training data set as a prior. Experiments conducted using artificial and real data sets show that the proposed method suppresses the overfitting of the regression function for noisy inputs and the root mean squared errors (RMSEs) of the predictions are smaller compared with those of an existing method.
基于Nadaraya-Watson估计的噪声输入贝叶斯核回归
在有噪声输入的回归中,如果可能,通常从给定的有噪声输入中去除噪声,然后将得到的无噪声输入提供给回归函数。然而,在某些情况下,没有可用的时间或方法来消除噪声。本文提出的回归方法利用无噪声成分的估计后验和由无噪声训练数据构造的无噪声解释值的非参数估计来确定有噪声输入的回归函数。此外,提出了一种估计噪声分布的概率生成模型。这使我们能够从单个噪声输入参数化地确定噪声分布,使用从训练数据集估计的噪声输入的无噪声成分的分布作为先验。利用人工数据集和真实数据集进行的实验表明,该方法抑制了回归函数对噪声输入的过拟合,预测结果的均方根误差(rmse)小于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信