{"title":"Uniqueness of entire graphs evolving by mean curvature flow","authors":"P. Daskalopoulos, M. Sáez","doi":"10.1515/crelle-2022-0085","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study the uniqueness of graphical mean curvature flow with locally Lipschitz initial data. We first prove that rotationally symmetric entire graphs are unique, without any further assumptions. Our methods also give an alternative simple proof of uniqueness in the one-dimensional case. In the general case, we establish the uniqueness of entire proper graphs that satisfy a uniform lower bound on the second fundamental form. The latter result extends to initial conditions that are proper graphs over subdomains of ℝ n {\\mathbb{R}^{n}} . A consequence of our result is the uniqueness of convex entire graphs, which allow us to prove that Hamilton’s Harnack estimate holds for mean curvature flow solutions that are convex entire graphs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0085","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract In this paper we study the uniqueness of graphical mean curvature flow with locally Lipschitz initial data. We first prove that rotationally symmetric entire graphs are unique, without any further assumptions. Our methods also give an alternative simple proof of uniqueness in the one-dimensional case. In the general case, we establish the uniqueness of entire proper graphs that satisfy a uniform lower bound on the second fundamental form. The latter result extends to initial conditions that are proper graphs over subdomains of ℝ n {\mathbb{R}^{n}} . A consequence of our result is the uniqueness of convex entire graphs, which allow us to prove that Hamilton’s Harnack estimate holds for mean curvature flow solutions that are convex entire graphs.
摘要本文研究了具有局部Lipschitz初始数据的图形平均曲率流的唯一性。我们首先证明了旋转对称全图是唯一的,没有任何进一步的假设。我们的方法在一维情况下也给出了另一种简单的唯一性证明。在一般情况下,我们建立了在第二种基本形式上满足一致下界的整个固有图的唯一性。后一种结果推广到初始条件,即在1 n {\mathbb{R}^{n}}的子域上的固有图。我们的结果的一个结果是凸整图的唯一性,这使我们能够证明Hamilton的Harnack估计适用于凸整图的平均曲率流解。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.