A contrario detection of good continuation of points

José Lezama, R. G. V. Gioi, G. Randall, J. Morel
{"title":"A contrario detection of good continuation of points","authors":"José Lezama, R. G. V. Gioi, G. Randall, J. Morel","doi":"10.1109/ICIP.2014.7025964","DOIUrl":null,"url":null,"abstract":"We will consider the problem of detecting configurations of points regularly spaced and lying on a smooth curve. This corresponds to the notion of good continuation introduced in the Gestalt theory. We present a robust algorithm for clustering points along such curves, whilst at the same time discarding noisy samples. Based on the a contrario methodology, the detector builds upon a simple, symmetric primitive for a triplet of points, and finds statistically meaningful chains of such triplets. An efficient implementation is proposed using the Floyd-Warshall algorithm. Experiments on synthetic and real data show that the method is able to identify the perceptually relevant configuration of points in good continuation.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"31 1","pages":"4757-4761"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We will consider the problem of detecting configurations of points regularly spaced and lying on a smooth curve. This corresponds to the notion of good continuation introduced in the Gestalt theory. We present a robust algorithm for clustering points along such curves, whilst at the same time discarding noisy samples. Based on the a contrario methodology, the detector builds upon a simple, symmetric primitive for a triplet of points, and finds statistically meaningful chains of such triplets. An efficient implementation is proposed using the Floyd-Warshall algorithm. Experiments on synthetic and real data show that the method is able to identify the perceptually relevant configuration of points in good continuation.
一个反向检测点的良好延续
我们将考虑检测位于光滑曲线上的规则间隔点的构型的问题。这与格式塔理论中引入的良好延续的概念相对应。我们提出了一种鲁棒的算法,用于沿着这些曲线聚类点,同时丢弃有噪声的样本。基于反向方法,检测器建立在一个简单的,对称的三个点的原语上,并找到这些三个点的统计意义链。提出了一种使用Floyd-Warshall算法的有效实现方法。在合成数据和实际数据上的实验表明,该方法能够识别出具有良好连续性的感知相关点的组态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信