Eric Jonas, Qifan Pu, S. Venkataraman, I. Stoica, B. Recht
{"title":"Occupy the cloud: distributed computing for the 99%","authors":"Eric Jonas, Qifan Pu, S. Venkataraman, I. Stoica, B. Recht","doi":"10.1145/3127479.3128601","DOIUrl":null,"url":null,"abstract":"Distributed computing remains inaccessible to a large number of users, in spite of many open source platforms and extensive commercial offerings. While distributed computation frameworks have moved beyond a simple map-reduce model, many users are still left to struggle with complex cluster management and configuration tools, even for running simple embarrassingly parallel jobs. We argue that stateless functions represent a viable platform for these users, eliminating cluster management overhead, fulfilling the promise of elasticity. Furthermore, using our prototype implementation, PyWren, we show that this model is general enough to implement a number of distributed computing models, such as BSP, efficiently. Extrapolating from recent trends in network bandwidth and the advent of disaggregated storage, we suggest that stateless functions are a natural fit for data processing in future computing environments.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"449","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3128601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 449
Abstract
Distributed computing remains inaccessible to a large number of users, in spite of many open source platforms and extensive commercial offerings. While distributed computation frameworks have moved beyond a simple map-reduce model, many users are still left to struggle with complex cluster management and configuration tools, even for running simple embarrassingly parallel jobs. We argue that stateless functions represent a viable platform for these users, eliminating cluster management overhead, fulfilling the promise of elasticity. Furthermore, using our prototype implementation, PyWren, we show that this model is general enough to implement a number of distributed computing models, such as BSP, efficiently. Extrapolating from recent trends in network bandwidth and the advent of disaggregated storage, we suggest that stateless functions are a natural fit for data processing in future computing environments.