Impaired Nitric Oxide Synthase Pathway in Diabetes Mellitus: Role of Asymmetric Dimethylarginine and Dimethylarginine Dimethylaminohydrolase

Ken Y. Lin, Akira Ito, T. Asagami, P. Tsao, S. Adimoolam, M. Kimoto, H. Tsuji, G. Reaven, J. Cooke
{"title":"Impaired Nitric Oxide Synthase Pathway in Diabetes Mellitus: Role of Asymmetric Dimethylarginine and Dimethylarginine Dimethylaminohydrolase","authors":"Ken Y. Lin, Akira Ito, T. Asagami, P. Tsao, S. Adimoolam, M. Kimoto, H. Tsuji, G. Reaven, J. Cooke","doi":"10.1161/01.CIR.0000027109.14149.67","DOIUrl":null,"url":null,"abstract":"Background—An endogenous inhibitor of nitric oxide synthase, asymmetric dimethylarginine (ADMA), is elevated in patients with type 2 diabetes mellitus (DM). This study explored the mechanisms by which ADMA becomes elevated in DM. Methods and Results—Male Sprague-Dawley rats were fed normal chow or high-fat diet (n=5 in each) with moderate streptozotocin injection to induce type 2 DM. Plasma ADMA was elevated in diabetic rats (1.33±0.31 versus 0.48±0.08 &mgr;mol/L;P <0.05). The activity, but not the expression, of dimethylarginine dimethylaminohydrolase (DDAH) was reduced in diabetic rats and negatively correlated with their plasma ADMA levels (P <0.05). DDAH activity was significantly reduced in vascular smooth muscle cells and human endothelial cells (HMEC-1) exposed to high glucose (25.5 mmol/L). The impairment of DDAH activity in vascular cells was associated with an accumulation of ADMA and a reduction in generation of cGMP. In human endothelial cells, coincubation with the antioxidant polyethylene glycol–conjugated superoxide dismutase (22 U/mL) reversed the effects of the high-glucose condition on DDAH activity, ADMA accumulation, and cGMP synthesis. Conclusions—A glucose-induced impairment of DDAH causes ADMA accumulation and may contribute to endothelial vasodilator dysfunction in DM.","PeriodicalId":10194,"journal":{"name":"Circulation: Journal of the American Heart Association","volume":"2 1","pages":"987-992"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"705","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.CIR.0000027109.14149.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 705

Abstract

Background—An endogenous inhibitor of nitric oxide synthase, asymmetric dimethylarginine (ADMA), is elevated in patients with type 2 diabetes mellitus (DM). This study explored the mechanisms by which ADMA becomes elevated in DM. Methods and Results—Male Sprague-Dawley rats were fed normal chow or high-fat diet (n=5 in each) with moderate streptozotocin injection to induce type 2 DM. Plasma ADMA was elevated in diabetic rats (1.33±0.31 versus 0.48±0.08 &mgr;mol/L;P <0.05). The activity, but not the expression, of dimethylarginine dimethylaminohydrolase (DDAH) was reduced in diabetic rats and negatively correlated with their plasma ADMA levels (P <0.05). DDAH activity was significantly reduced in vascular smooth muscle cells and human endothelial cells (HMEC-1) exposed to high glucose (25.5 mmol/L). The impairment of DDAH activity in vascular cells was associated with an accumulation of ADMA and a reduction in generation of cGMP. In human endothelial cells, coincubation with the antioxidant polyethylene glycol–conjugated superoxide dismutase (22 U/mL) reversed the effects of the high-glucose condition on DDAH activity, ADMA accumulation, and cGMP synthesis. Conclusions—A glucose-induced impairment of DDAH causes ADMA accumulation and may contribute to endothelial vasodilator dysfunction in DM.
糖尿病一氧化氮合酶途径受损:不对称二甲基精氨酸和二甲基精氨酸二甲氨基水解酶的作用
一种内源性一氧化氮合酶抑制剂不对称二甲基精氨酸(ADMA)在2型糖尿病(DM)患者中升高。方法与结果:雄性Sprague-Dawley大鼠分别饲喂正常饲料和高脂饲料(每组5只),注射适量链脲佐菌素诱导2型糖尿病。糖尿病大鼠血浆ADMA升高(1.33±0.31 vs 0.48±0.08;P <0.05)。糖尿病大鼠血浆二甲基精氨酸二甲氨基水解酶(DDAH)活性降低,与血浆ADMA水平呈负相关(P <0.05)。暴露于高葡萄糖(25.5 mmol/L)的血管平滑肌细胞和人内皮细胞(HMEC-1)的DDAH活性显著降低。血管细胞中DDAH活性的损害与ADMA的积累和cGMP生成的减少有关。在人内皮细胞中,与抗氧化剂聚乙二醇偶联超氧化物歧化酶(22 U/mL)共孵育可逆转高糖条件对DDAH活性、ADMA积累和cGMP合成的影响。结论:葡萄糖诱导的DDAH损伤可引起ADMA积累,并可能导致糖尿病患者内皮血管扩张剂功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信