Forward and Inverse Uncertainty Quantification using Multilevel Monte Carlo Algorithms for an Elliptic Nonlocal Equation

A. Jasra, K. Law, Yan Zhou
{"title":"Forward and Inverse Uncertainty Quantification using Multilevel Monte Carlo Algorithms for an Elliptic Nonlocal Equation","authors":"A. Jasra, K. Law, Yan Zhou","doi":"10.1615/INT.J.UNCERTAINTYQUANTIFICATION.2016018661","DOIUrl":null,"url":null,"abstract":"This paper considers uncertainty quantification for an elliptic nonlocal equation. In particular, it is assumed that the parameters which define the kernel in the nonlocal operator are uncertain and a priori distributed according to a probability measure. It is shown that the induced probability measure on some quantities of interest arising from functionals of the solution to the equation with random inputs is well-defined; as is the posterior distribution on parameters given observations. As the elliptic nonlocal equation cannot be solved approximate posteriors are constructed. The multilevel Monte Carlo (MLMC) and multilevel sequential Monte Carlo (MLSMC) sampling algorithms are used for a priori and a posteriori estimation, respectively, of quantities of interest. These algorithms reduce the amount of work to estimate posterior expectations, for a given level of error, relative to Monte Carlo and i.i.d. sampling from the posterior at a given level of approximation of the solution of the elliptic nonlocal equation.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/INT.J.UNCERTAINTYQUANTIFICATION.2016018661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper considers uncertainty quantification for an elliptic nonlocal equation. In particular, it is assumed that the parameters which define the kernel in the nonlocal operator are uncertain and a priori distributed according to a probability measure. It is shown that the induced probability measure on some quantities of interest arising from functionals of the solution to the equation with random inputs is well-defined; as is the posterior distribution on parameters given observations. As the elliptic nonlocal equation cannot be solved approximate posteriors are constructed. The multilevel Monte Carlo (MLMC) and multilevel sequential Monte Carlo (MLSMC) sampling algorithms are used for a priori and a posteriori estimation, respectively, of quantities of interest. These algorithms reduce the amount of work to estimate posterior expectations, for a given level of error, relative to Monte Carlo and i.i.d. sampling from the posterior at a given level of approximation of the solution of the elliptic nonlocal equation.
椭圆型非局部方程的多级蒙特卡罗算法的正反不确定性量化
研究一类椭圆型非定域方程的不确定性量化问题。特别地,假定非局部算子中定义核的参数是不确定的,并且是根据概率度量先验分布的。证明了随机输入方程解的泛函对某些感兴趣的量的诱导概率测度是定义良好的;给定观测值的参数的后验分布也是如此。由于椭圆型非局部方程不能解,构造了近似后验。多层蒙特卡罗(MLMC)和多层顺序蒙特卡罗(MLSMC)采样算法分别用于感兴趣数量的先验和后验估计。这些算法减少了估计后验期望的工作量,对于给定的误差水平,相对于蒙特卡罗和i.i.d采样的后验在给定的近似水平的椭圆非局部方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信