{"title":"Eichler-Shimura relations and semisimplicity of étale cohomology of quaternionic Shimura varieties","authors":"J. Nekovář","doi":"10.24033/ASENS.2374","DOIUrl":null,"url":null,"abstract":"we show that the non CM part of `-adic étale cohomology of any compact quaternionic Shimura variety with coefficients in any automorphic local system is a semisimple Galois representation. If the local system has weight k = (k1, . . . , kd) with all ki of the same parity, the full `-adic étale cohomology is semisimple. For Hilbert modular varieties, analogous results are proved for `-adic intersection cohomology of the Baily-Borel compactification. The proof combines a representation-theoretical criterion of semisimplicity with Eichler-Shimura relations for partial Frobenius morphisms. Résumé : on montre que l’action galoisienne sur la partie sans multiplication complexe de la cohomologie étale d’un faisceau `-adique lisse automorphe sur une variété de Shimura quaternionique compacte est semisimple. Si le poids du faisceau s’écrit k = (k1, . . . , kd), où les ki ont la même parité, toute la cohomologie étale est semi-simple. Les mêmes résultats sont montrés pour la cohomologie d’intersection `-adique de la compactification de Baily-Borel des variétés modulaires de Hilbert. La preuve utilise un critère abstrait de semi-simplicité et les relations d’Eichler-Shimura pour les morphismes de Frobenius partiels.","PeriodicalId":50971,"journal":{"name":"Annales Scientifiques De L Ecole Normale Superieure","volume":"8 1","pages":"1179-1252"},"PeriodicalIF":1.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Scientifiques De L Ecole Normale Superieure","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ASENS.2374","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22
Abstract
we show that the non CM part of `-adic étale cohomology of any compact quaternionic Shimura variety with coefficients in any automorphic local system is a semisimple Galois representation. If the local system has weight k = (k1, . . . , kd) with all ki of the same parity, the full `-adic étale cohomology is semisimple. For Hilbert modular varieties, analogous results are proved for `-adic intersection cohomology of the Baily-Borel compactification. The proof combines a representation-theoretical criterion of semisimplicity with Eichler-Shimura relations for partial Frobenius morphisms. Résumé : on montre que l’action galoisienne sur la partie sans multiplication complexe de la cohomologie étale d’un faisceau `-adique lisse automorphe sur une variété de Shimura quaternionique compacte est semisimple. Si le poids du faisceau s’écrit k = (k1, . . . , kd), où les ki ont la même parité, toute la cohomologie étale est semi-simple. Les mêmes résultats sont montrés pour la cohomologie d’intersection `-adique de la compactification de Baily-Borel des variétés modulaires de Hilbert. La preuve utilise un critère abstrait de semi-simplicité et les relations d’Eichler-Shimura pour les morphismes de Frobenius partiels.
期刊介绍:
The Annales scientifiques de l''École normale supérieure were founded in 1864 by Louis Pasteur. The journal dealt with subjects touching on Physics, Chemistry and Natural Sciences. Around the turn of the century, it was decided that the journal should be devoted to Mathematics.
Today, the Annales are open to all fields of mathematics. The Editorial Board, with the help of referees, selects articles which are mathematically very substantial. The Journal insists on maintaining a tradition of clarity and rigour in the exposition.
The Annales scientifiques de l''École normale supérieures have been published by Gauthier-Villars unto 1997, then by Elsevier from 1999 to 2007. Since January 2008, they are published by the Société Mathématique de France.