Sonja Biedermann, M. Henzinger, Christian Schulz, Bernhard Schuster
{"title":"Memetic Graph Clustering","authors":"Sonja Biedermann, M. Henzinger, Christian Schulz, Bernhard Schuster","doi":"10.4230/LIPIcs.SEA.2018.3","DOIUrl":null,"url":null,"abstract":"It is common knowledge that there is no single best strategy for graph clustering, which justifies a plethora of existing approaches. In this paper, we present a general memetic algorithm, VieClus, to tackle the graph clustering problem. This algorithm can be adapted to optimize different objective functions. A key component of our contribution are natural recombine operators that employ ensemble clusterings as well as multi-level techniques. Lastly, we combine these techniques with a scalable communication protocol, producing a system that is able to compute high-quality solutions in a short amount of time. We instantiate our scheme with local search for modularity and show that our algorithm successfully improves or reproduces all entries of the 10th DIMACS implementation~challenge under consideration using a small amount of time.","PeriodicalId":9448,"journal":{"name":"Bulletin of the Society of Sea Water Science, Japan","volume":"25 1","pages":"3:1-3:15"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Society of Sea Water Science, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SEA.2018.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
It is common knowledge that there is no single best strategy for graph clustering, which justifies a plethora of existing approaches. In this paper, we present a general memetic algorithm, VieClus, to tackle the graph clustering problem. This algorithm can be adapted to optimize different objective functions. A key component of our contribution are natural recombine operators that employ ensemble clusterings as well as multi-level techniques. Lastly, we combine these techniques with a scalable communication protocol, producing a system that is able to compute high-quality solutions in a short amount of time. We instantiate our scheme with local search for modularity and show that our algorithm successfully improves or reproduces all entries of the 10th DIMACS implementation~challenge under consideration using a small amount of time.