{"title":"Controlled sheep breeding: update 1980-1985.","authors":"T. J. Robinson","doi":"10.1071/bi9880001","DOIUrl":null,"url":null,"abstract":"This contribution to the Symposium concerns four topics which have been addressed in our laboratory over the past five years. First, the responses to a controlled light environment of Merino ewes and rams have been compared with those of two British breeds. The endocrinological patterns were similar in all breeds but cyclic ovarian activity and ram libido were different. While showing a degree of entrainment to photoperiod, the breeding patterns were much less rigidly controlled in the Merinos than in the others. Second, the effectiveness of establishment of a cervical reservoir of spermatozoa, in ewes in which oestrus and ovulation have been controlled, has been re-examined. This is highly dependent on the time of insemination relative to that of the release of LH. Maximum numbers are found when ewes are inseminated shortly after the LH peak, i.e. some 6-10 h after the onset of oestrus. Third, the quantitative and temporal endocrinological and behavioural events following standard, progestagen-PMSG treatment have been quantified. Contrary to earlier expressed beliefs, these events are remarkably predictable provided an intensive system of mating or detection of oestrus is used. The onset of oestrus in treated anoestrous crossbred ewes has a normal distribution, with a range of 24 h, centred around a mean of 33 h after withdrawal of a 30 mg Cronolone intravaginal sponge and injection of 500 i.u. PMSG. This period of time is dose-dependent. The LH peak occurs 4.5 +/- 0.7 h later and the times of onset of oestrus and of LH release are highly correlated (r = 0.93). Ovulation is some 24 h later again. Fourth, differences in the response of ewes to different batches of PMSG have been defined. While the three commercial preparations studied regularly induced ovulation in anoestrous ewes at doses of 250 i.u. and above, the quantitative responses varied greatly. One preparation would not induce multiple ovulation, even at high doses. There are differences in steroidogenesis and in pregnancy rates, associated with dose of PMSG and the consequent ovulation rate: the ideal would be for every ewe to shed two or three ova. A higher ovulation rate is acceptable, as early embryonic mortality generally reduces the litter size. This is particularly important in deep anoestrus. However, this does not solve the problem of breeding in early lactation.","PeriodicalId":8573,"journal":{"name":"Australian journal of biological sciences","volume":"7 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian journal of biological sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/bi9880001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
This contribution to the Symposium concerns four topics which have been addressed in our laboratory over the past five years. First, the responses to a controlled light environment of Merino ewes and rams have been compared with those of two British breeds. The endocrinological patterns were similar in all breeds but cyclic ovarian activity and ram libido were different. While showing a degree of entrainment to photoperiod, the breeding patterns were much less rigidly controlled in the Merinos than in the others. Second, the effectiveness of establishment of a cervical reservoir of spermatozoa, in ewes in which oestrus and ovulation have been controlled, has been re-examined. This is highly dependent on the time of insemination relative to that of the release of LH. Maximum numbers are found when ewes are inseminated shortly after the LH peak, i.e. some 6-10 h after the onset of oestrus. Third, the quantitative and temporal endocrinological and behavioural events following standard, progestagen-PMSG treatment have been quantified. Contrary to earlier expressed beliefs, these events are remarkably predictable provided an intensive system of mating or detection of oestrus is used. The onset of oestrus in treated anoestrous crossbred ewes has a normal distribution, with a range of 24 h, centred around a mean of 33 h after withdrawal of a 30 mg Cronolone intravaginal sponge and injection of 500 i.u. PMSG. This period of time is dose-dependent. The LH peak occurs 4.5 +/- 0.7 h later and the times of onset of oestrus and of LH release are highly correlated (r = 0.93). Ovulation is some 24 h later again. Fourth, differences in the response of ewes to different batches of PMSG have been defined. While the three commercial preparations studied regularly induced ovulation in anoestrous ewes at doses of 250 i.u. and above, the quantitative responses varied greatly. One preparation would not induce multiple ovulation, even at high doses. There are differences in steroidogenesis and in pregnancy rates, associated with dose of PMSG and the consequent ovulation rate: the ideal would be for every ewe to shed two or three ova. A higher ovulation rate is acceptable, as early embryonic mortality generally reduces the litter size. This is particularly important in deep anoestrus. However, this does not solve the problem of breeding in early lactation.