An inertial non-monotonic self-adaptive iterative algorithm for solving equilibrium problems

IF 2.5 2区 数学 Q1 MATHEMATICS
H. Rehman, P. Kumam, Y. Shehu, Murat Ozdemir, W. Kumam
{"title":"An inertial non-monotonic self-adaptive iterative algorithm for solving equilibrium problems","authors":"H. Rehman, P. Kumam, Y. Shehu, Murat Ozdemir, W. Kumam","doi":"10.23952/jnva.6.2022.1.04","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a modification of the extragradient algorithm with a non-monotonic stepsize rule to solve equilibrium problems. This modification is based on the inertial subgradient technique. Under mild conditions, such as, the Lipschitz continuity and the monotonicity of a bifunction (including the pseudomonotonicity), the strong convergence of the proposed algorithm is established in a real Hilbert space. The proposed algorithm uses a non-monotonic stepsize rule based on the local bifunction information rather than its Lipschitz-type constants or other line search methods. We present various numerical examples, which illustrate the strong convergence of the algorithm.","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear and Variational Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23952/jnva.6.2022.1.04","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a modification of the extragradient algorithm with a non-monotonic stepsize rule to solve equilibrium problems. This modification is based on the inertial subgradient technique. Under mild conditions, such as, the Lipschitz continuity and the monotonicity of a bifunction (including the pseudomonotonicity), the strong convergence of the proposed algorithm is established in a real Hilbert space. The proposed algorithm uses a non-monotonic stepsize rule based on the local bifunction information rather than its Lipschitz-type constants or other line search methods. We present various numerical examples, which illustrate the strong convergence of the algorithm.
求解平衡问题的惯性非单调自适应迭代算法
本文引入了一种非单调步长规则改进的外加算法来求解平衡问题。这种修正是基于惯性次梯度技术。在Lipschitz连续性和双函数单调性(包括伪单调性)等较温和的条件下,证明了该算法在实数Hilbert空间中的强收敛性。该算法采用一种基于局部双函数信息的非单调步长规则,而不是其lipschitz型常数或其他线搜索方法。给出了多个数值算例,说明了该算法的强收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
3.40%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信