Cleaning up after a face tracker: False positive removal

Makarand Tapaswi, Cemal Cagn Corez, M. Bäuml, H. K. Ekenel, R. Stiefelhagen
{"title":"Cleaning up after a face tracker: False positive removal","authors":"Makarand Tapaswi, Cemal Cagn Corez, M. Bäuml, H. K. Ekenel, R. Stiefelhagen","doi":"10.1109/ICIP.2014.7025050","DOIUrl":null,"url":null,"abstract":"Automatic person identification in TV series has gained popularity over the years. While most of the works rely on using face-based recognition, errors during tracking such as false positive face tracks are typically ignored. We propose a variety of methods to remove false positive face tracks and categorize the methods into confidence- and context-based. We evaluate our methods on a large TV series data set and show that up to 75% of the false positive face tracks are removed at the cost of 3.6% true positive tracks. We further show that the proposed method is general and applicable to other detectors or trackers.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"153 1","pages":"253-257"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Automatic person identification in TV series has gained popularity over the years. While most of the works rely on using face-based recognition, errors during tracking such as false positive face tracks are typically ignored. We propose a variety of methods to remove false positive face tracks and categorize the methods into confidence- and context-based. We evaluate our methods on a large TV series data set and show that up to 75% of the false positive face tracks are removed at the cost of 3.6% true positive tracks. We further show that the proposed method is general and applicable to other detectors or trackers.
面部追踪器后的清理:假阳性去除
近年来,电视连续剧中的自动人物识别越来越受欢迎。虽然大多数工作依赖于基于人脸的识别,但跟踪过程中的错误,如假阳性的人脸跟踪通常被忽略。我们提出了多种方法来去除假阳性的人脸轨迹,并将这些方法分为基于置信度和基于上下文。我们在一个大型电视连续剧数据集上评估了我们的方法,结果表明,以3.6%的真阳性轨迹为代价,高达75%的假阳性人脸轨迹被去除。进一步证明了该方法具有通用性,适用于其他检测器或跟踪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信