On the Challenges of Generating Pixel Art Character Sprites Using GANs

F. Coutinho, L. Chaimowicz
{"title":"On the Challenges of Generating Pixel Art Character Sprites Using GANs","authors":"F. Coutinho, L. Chaimowicz","doi":"10.1609/aiide.v18i1.21951","DOIUrl":null,"url":null,"abstract":"We pose the problem of generating pixel art character sprites facing one side (e.g., right), given their images facing another one (e.g., front), as an image-to-image translation task and investigate the use of the Pix2Pix architecture to solve it. Aiming to improve the results over unseen data, we propose and investigate two architecture modifications: (a) representing images using color palettes and (b) adding a histogram loss term to the generator. We compared the results qualitatively and quantitatively using FID and L1 distances between the generated and target images. Results indicate that representing images with color palettes encourages overfitting, and the histogram loss leads to slightly improved results.","PeriodicalId":92576,"journal":{"name":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","volume":"34 1","pages":"87-94"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v18i1.21951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We pose the problem of generating pixel art character sprites facing one side (e.g., right), given their images facing another one (e.g., front), as an image-to-image translation task and investigate the use of the Pix2Pix architecture to solve it. Aiming to improve the results over unseen data, we propose and investigate two architecture modifications: (a) representing images using color palettes and (b) adding a histogram loss term to the generator. We compared the results qualitatively and quantitatively using FID and L1 distances between the generated and target images. Results indicate that representing images with color palettes encourages overfitting, and the histogram loss leads to slightly improved results.
关于使用gan生成像素美术角色精灵的挑战
我们提出了生成面向一侧(例如,右侧)的像素艺术角色精灵的问题,给定它们的图像面向另一侧(例如,正面),作为图像到图像的翻译任务,并研究使用Pix2Pix架构来解决这个问题。为了改善未见数据的结果,我们提出并研究了两种架构修改:(a)使用调色板表示图像;(b)向生成器添加直方图损失项。我们使用FID和L1距离对生成图像和目标图像之间的结果进行定性和定量比较。结果表明,用调色板表示图像会导致过拟合,直方图损失导致结果略有改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信