Top-k join queries: overcoming the curse of anti-correlation

Manish Patil, R. Shah, Sharma V. Thankachan
{"title":"Top-k join queries: overcoming the curse of anti-correlation","authors":"Manish Patil, R. Shah, Sharma V. Thankachan","doi":"10.1145/2513591.2513645","DOIUrl":null,"url":null,"abstract":"The existing heuristics for top-k join queries, aiming to minimize the scan-depth, rely heavily on scores and correlation of scores. It is known that for uniformly random scores between two relations of length n, scan-depth of √kn is required. Moreover, optimizing multiple criteria of selections that are anti-correlated may require scan-depth up to (n + k)/2. We build a linear space index, which in anticipation of worst-case queries maintains a subset of answers. Based on this, we achieve Õ(√kn) join trials i.e., average case performance even for the worst-case queries. The experimental evaluation shows superior performance against the well-known Rank-Join algorithm.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"136 1","pages":"76-85"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513591.2513645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The existing heuristics for top-k join queries, aiming to minimize the scan-depth, rely heavily on scores and correlation of scores. It is known that for uniformly random scores between two relations of length n, scan-depth of √kn is required. Moreover, optimizing multiple criteria of selections that are anti-correlated may require scan-depth up to (n + k)/2. We build a linear space index, which in anticipation of worst-case queries maintains a subset of answers. Based on this, we achieve Õ(√kn) join trials i.e., average case performance even for the worst-case queries. The experimental evaluation shows superior performance against the well-known Rank-Join algorithm.
Top-k连接查询:克服反相关的诅咒
现有的top-k连接查询的启发式算法,旨在最小化扫描深度,严重依赖于分数和分数的相关性。已知对于长度为n的两个关系之间的均匀随机分数,需要√kn的扫描深度。此外,优化反相关选择的多个标准可能需要高达(n + k)/2的扫描深度。我们建立了一个线性空间索引,它在预测最坏情况查询时维护了一个答案子集。在此基础上,我们实现了Õ(√kn)的连接试验,即即使是最坏情况下的查询,平均情况下的性能。实验结果表明,该算法优于著名的Rank-Join算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信