Borel subgroups of the plane Cremona group

IF 1.2 1区 数学 Q1 MATHEMATICS
Jean-Philippe Furter, Isac Hed'en
{"title":"Borel subgroups of the plane Cremona group","authors":"Jean-Philippe Furter, Isac Hed'en","doi":"10.1515/crelle-2022-0065","DOIUrl":null,"url":null,"abstract":"Abstract It is well known that all Borel subgroups of a linear algebraic group are conjugate. Berest, Eshmatov, and Eshmatov have shown that this result also holds for the automorphism group Aut ⁢ ( 𝔸 2 ) {{\\mathrm{Aut}}({\\mathbb{A}}^{2})} of the affine plane. In this paper, we describe all Borel subgroups of the complex Cremona group Bir ⁢ ( ℙ 2 ) {{\\rm Bir}({\\mathbb{P}}^{2})} up to conjugation, proving in particular that they are not necessarily conjugate. In principle, this fact answers a question of Popov. More precisely, we prove that Bir ⁢ ( ℙ 2 ) {{\\rm Bir}({\\mathbb{P}}^{2})} admits Borel subgroups of any rank r ∈ { 0 , 1 , 2 } {r\\in\\{0,1,2\\}} and that all Borel subgroups of rank r ∈ { 1 , 2 } {r\\in\\{1,2\\}} are conjugate. In rank 0, there is a one-to-one correspondence between conjugacy classes of Borel subgroups of rank 0 and hyperelliptic curves of genus ℊ ≥ 1 {\\mathcal{g}\\geq 1} . Hence, the conjugacy class of a rank 0 Borel subgroup admits two invariants: a discrete one, the genus ℊ {\\mathcal{g}} , and a continuous one, corresponding to the coarse moduli space of hyperelliptic curves of genus ℊ {\\mathcal{g}} . This moduli space is of dimension 2 ⁢ ℊ - 1 {2\\mathcal{g}-1} .","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"45 1","pages":"133 - 177"},"PeriodicalIF":1.2000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0065","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract It is well known that all Borel subgroups of a linear algebraic group are conjugate. Berest, Eshmatov, and Eshmatov have shown that this result also holds for the automorphism group Aut ⁢ ( 𝔸 2 ) {{\mathrm{Aut}}({\mathbb{A}}^{2})} of the affine plane. In this paper, we describe all Borel subgroups of the complex Cremona group Bir ⁢ ( ℙ 2 ) {{\rm Bir}({\mathbb{P}}^{2})} up to conjugation, proving in particular that they are not necessarily conjugate. In principle, this fact answers a question of Popov. More precisely, we prove that Bir ⁢ ( ℙ 2 ) {{\rm Bir}({\mathbb{P}}^{2})} admits Borel subgroups of any rank r ∈ { 0 , 1 , 2 } {r\in\{0,1,2\}} and that all Borel subgroups of rank r ∈ { 1 , 2 } {r\in\{1,2\}} are conjugate. In rank 0, there is a one-to-one correspondence between conjugacy classes of Borel subgroups of rank 0 and hyperelliptic curves of genus ℊ ≥ 1 {\mathcal{g}\geq 1} . Hence, the conjugacy class of a rank 0 Borel subgroup admits two invariants: a discrete one, the genus ℊ {\mathcal{g}} , and a continuous one, corresponding to the coarse moduli space of hyperelliptic curves of genus ℊ {\mathcal{g}} . This moduli space is of dimension 2 ⁢ ℊ - 1 {2\mathcal{g}-1} .
平面Cremona群的Borel子群
摘要已知线性代数群的Borel子群都是共轭的。Berest, Eshmatov和Eshmatov已经证明了这个结果也适用于的自同构群Aut²(²){{\mathrm{Aut}} ({\mathbb{A}}²{)。本文描述了复数Cremona群Bir¹(²)Bir}(}{{\rm}{\mathbb{P}} ^{2})}直至共轭的所有Borel子群,特别证明了它们不一定是共轭的。原则上,这个事实回答了波波夫的一个问题。更准确地说,我们证明了Bir(²){{\rmBir}({\mathbb{P}} ^{2})允许}任意秩r∈0,1,2 {r}{\in{0,1,2}的}Borel子群,并且所有秩r∈1,2 {r}{\in{1,2}的Borel子群}是共轭的。在秩0中,秩0的Borel子群的共轭类与属ℊ≥1 {\mathcal{g}\geq 1的超椭圆曲线之间存在一一对应关系}。因此,0阶Borel子群的共轭类允许两个不变量:一个是离散的不变量,即属ℊ{\mathcal{g}},一个是连续的不变量,对应于属ℊ{\mathcal{g}}的超椭圆曲线的粗模空间。这个模空间的维数是2²ℊ-1²{\mathcal{g} -1}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信