{"title":"On Methods of Estimation for Generalized Logarithmic Series Distribution and Its Application to Counts of Red Mites on Apple Leaves","authors":"F. Wani","doi":"10.18782/2582-2845.8689","DOIUrl":null,"url":null,"abstract":"The Generalized Logarithmic Series Distribution (GLSD) adds an extra parameter to the usual logarithmic series distribution and was introduced by Jain and Gupta (1973). This distribution has found applications in various fields. The estimation of parameters of generalized logarithmic series distribution was studied by the methods of maximum likelihood, moments, minimum chi square and weighted discrepancies. The GLSD was fitted to counts of red mites on apple leaves and it was observed that all the estimation techniques perform well in estimating the parameters of generalized logarithmic series distribution but with varying degree of non-significance.","PeriodicalId":13334,"journal":{"name":"Indian Journal of Pure & Applied Biosciences","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure & Applied Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18782/2582-2845.8689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Generalized Logarithmic Series Distribution (GLSD) adds an extra parameter to the usual logarithmic series distribution and was introduced by Jain and Gupta (1973). This distribution has found applications in various fields. The estimation of parameters of generalized logarithmic series distribution was studied by the methods of maximum likelihood, moments, minimum chi square and weighted discrepancies. The GLSD was fitted to counts of red mites on apple leaves and it was observed that all the estimation techniques perform well in estimating the parameters of generalized logarithmic series distribution but with varying degree of non-significance.