A. Papalambrou, Dimitrios Karadimas, J. Gialelis, A. Voyiatzis
{"title":"A versatile scalable smart waste-bin system based on resource-limited embedded devices","authors":"A. Papalambrou, Dimitrios Karadimas, J. Gialelis, A. Voyiatzis","doi":"10.1109/ETFA.2015.7301466","DOIUrl":null,"url":null,"abstract":"This work presents the architecture, modelling, simulation, and physical implementation of a versatile, scalable system for use in common-type waste-bins that can perform and transmit accurate fill-level estimates while consuming minimal power and consisting of low-cost embedded components. The sensing units are based on ultrasonic sensors that provide ranging information which is translated to fill-level estimations based on extensive simulations in MATLAB and physical experiments. At the heart of the proposed implementation lies RFID technology with active RFID tags retrieving information and controlling the sensors and RFID readers receiving and interpreting information. Statistical processing of the simulation in combination with physical experiments and field tests verified that the system works accurately and efficiently with a tiny data-load fingerprint.","PeriodicalId":6862,"journal":{"name":"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)","volume":"40 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2015.7301466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
This work presents the architecture, modelling, simulation, and physical implementation of a versatile, scalable system for use in common-type waste-bins that can perform and transmit accurate fill-level estimates while consuming minimal power and consisting of low-cost embedded components. The sensing units are based on ultrasonic sensors that provide ranging information which is translated to fill-level estimations based on extensive simulations in MATLAB and physical experiments. At the heart of the proposed implementation lies RFID technology with active RFID tags retrieving information and controlling the sensors and RFID readers receiving and interpreting information. Statistical processing of the simulation in combination with physical experiments and field tests verified that the system works accurately and efficiently with a tiny data-load fingerprint.