Ion-polaron interaction in modified tellurite glasses

Luis A Hernandez Garcia, M. C. Molina, Marianela Zoratti, E. Cardillo, S. Terny, M. Sola, M. Frechero
{"title":"Ion-polaron interaction in modified tellurite glasses","authors":"Luis A Hernandez Garcia, M. C. Molina, Marianela Zoratti, E. Cardillo, S. Terny, M. Sola, M. Frechero","doi":"10.15406/mseij.2019.03.00100","DOIUrl":null,"url":null,"abstract":"Glasses formed by a mix of oxides are interesting for many technological applications. Their physical properties change according to the constituent oxides. Every oxide creates a three-dimensional network built by corner connected oxygen polyhedral, with different coordination number. The oxides can be either glass formers or glass modifiers, granting the final product specific characteristics. Thus, it is of utmost importance which oxides to incorporate to the original mix. In this work, we analyze the polaron conductivity in the presence of large alkaline cation concentrations. We studied oxide glasses formed by TeO2 modified by the incorporation of transition metal oxides: V2O5, Cu2O, and MoO3. Additionally, such tellurite glasses contain Na2O or MgO. Holstein 1 proposed in 1959 for materials with low charge carrier mobility (<0.1cm/V.s) that an electron trapped in the lattice would not be able to move unless the lattice could move together with it. Such proposal gave birth to the polaron concept. The explanation is that the charge carrier (the electron) induces a dipole moment on its neighboring and both move together, i.e. the polaron. Therefore, polaron conductivity involves the displacement of polaron in a material. When the material is a glass the charge carrier and the distortion in its surrounding move through the glassy matrix. For that reason, in this work we study how the presence of alkaline and alkaline earth cations affects the polaron transportation in the tellurite glasses.","PeriodicalId":18241,"journal":{"name":"Material Science & Engineering International Journal","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science & Engineering International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/mseij.2019.03.00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Glasses formed by a mix of oxides are interesting for many technological applications. Their physical properties change according to the constituent oxides. Every oxide creates a three-dimensional network built by corner connected oxygen polyhedral, with different coordination number. The oxides can be either glass formers or glass modifiers, granting the final product specific characteristics. Thus, it is of utmost importance which oxides to incorporate to the original mix. In this work, we analyze the polaron conductivity in the presence of large alkaline cation concentrations. We studied oxide glasses formed by TeO2 modified by the incorporation of transition metal oxides: V2O5, Cu2O, and MoO3. Additionally, such tellurite glasses contain Na2O or MgO. Holstein 1 proposed in 1959 for materials with low charge carrier mobility (<0.1cm/V.s) that an electron trapped in the lattice would not be able to move unless the lattice could move together with it. Such proposal gave birth to the polaron concept. The explanation is that the charge carrier (the electron) induces a dipole moment on its neighboring and both move together, i.e. the polaron. Therefore, polaron conductivity involves the displacement of polaron in a material. When the material is a glass the charge carrier and the distortion in its surrounding move through the glassy matrix. For that reason, in this work we study how the presence of alkaline and alkaline earth cations affects the polaron transportation in the tellurite glasses.
改性碲玻璃中的离子-极化子相互作用
由各种氧化物混合而成的玻璃对许多技术应用都很有趣。它们的物理性质根据组成氧化物的不同而变化。每一种氧化物都以不同配位数的角连接氧多面体构成三维网络。氧化物可以是玻璃形成剂或玻璃改性剂,赋予最终产品特定的特性。因此,最重要的是要把哪些氧化物掺入原来的混合物中。在这项工作中,我们分析了极化子电导率在大碱性阳离子浓度的存在。我们研究了用过渡金属氧化物V2O5、Cu2O和MoO3修饰TeO2形成的氧化玻璃。此外,这种碲酸盐玻璃含有Na2O或MgO。Holstein 1在1959年提出,对于低载流子迁移率(<0.1cm/V.s)的材料,被困在晶格中的电子将无法移动,除非晶格能够与它一起移动。这样的提议产生了极化子的概念。解释是电荷载体(电子)在它的邻居上引起偶极矩,两者一起运动,即极化子。因此,极化子电导率涉及极化子在材料中的位移。当材料是玻璃时,电荷载流子及其周围的畸变通过玻璃基质移动。因此,在本工作中,我们研究了碱性和碱性土阳离子的存在如何影响碲玻璃中极化子的输运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信