Machine learning in real-time control of water systems

Arnold H. Lobbrecht , Dimitri P. Solomatine
{"title":"Machine learning in real-time control of water systems","authors":"Arnold H. Lobbrecht ,&nbsp;Dimitri P. Solomatine","doi":"10.1016/S1462-0758(02)00023-7","DOIUrl":null,"url":null,"abstract":"<div><p>In real-time control (RTC) of combined urban and rural water systems the so-called centralised control requires information from different locations in the water system and hence sensitive to the communication network breakdown during extreme storm runoff events. Optimisation algorithms used in advanced forms of centralised control require considerable computing times and thus may be impractical for RTC. To overcome these problems, the application of machine learning methods is proposed, using artificial neural networks and fuzzy adaptive systems. Results obtained in a realistic case study show that the trained controllers, can replicate centralised control behaviour quite accurately and rapidly, while using only local data sources.</p></div>","PeriodicalId":101268,"journal":{"name":"Urban Water","volume":"4 3","pages":"Pages 283-289"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1462-0758(02)00023-7","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1462075802000237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In real-time control (RTC) of combined urban and rural water systems the so-called centralised control requires information from different locations in the water system and hence sensitive to the communication network breakdown during extreme storm runoff events. Optimisation algorithms used in advanced forms of centralised control require considerable computing times and thus may be impractical for RTC. To overcome these problems, the application of machine learning methods is proposed, using artificial neural networks and fuzzy adaptive systems. Results obtained in a realistic case study show that the trained controllers, can replicate centralised control behaviour quite accurately and rapidly, while using only local data sources.

水系统实时控制中的机器学习
在城乡结合水系统的实时控制(RTC)中,所谓的集中控制需要来自水系统中不同位置的信息,因此对极端暴雨径流事件期间通信网络故障很敏感。在高级形式的集中控制中使用的优化算法需要相当多的计算时间,因此对于RTC可能不切实际。为了克服这些问题,提出了机器学习方法的应用,使用人工神经网络和模糊自适应系统。在实际案例研究中获得的结果表明,经过训练的控制器可以非常准确和快速地复制集中控制行为,而仅使用局部数据源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信