A novel design methodology for high performance and low power digital filters

K. Muhammad, K. Roy
{"title":"A novel design methodology for high performance and low power digital filters","authors":"K. Muhammad, K. Roy","doi":"10.1109/ICCAD.1999.810626","DOIUrl":null,"url":null,"abstract":"Presents novel design methodologies which can be used to dramatically reduce the complexity of parallel implementations of digital FIR filters. These approaches are also applicable to IIR filters. Two ideas are presented. First, we remove the redundant computation by using a graph-theoretic framework in which we find the optimal re-ordering of computations for maximal computation sharing. Second, we present the novel approach of searching for a quantization which improves the computation sharing when the frequency-domain transfer function is allowed to deviate within given bounds. A simple search scheme is presented and it is shown that, by appropriate perturbation of the filter coefficients, one can dramatically reduce the number of adders required in the filter implementation. Using these approaches, on an average, less than one adder per coefficient is required, in contrast to a full-width multiplier. Hence, the presented methodologies are a useful compliment to the existing design approaches of high-performance and low-power digital filters for future mobile computing and communication systems.","PeriodicalId":6414,"journal":{"name":"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1999.810626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Presents novel design methodologies which can be used to dramatically reduce the complexity of parallel implementations of digital FIR filters. These approaches are also applicable to IIR filters. Two ideas are presented. First, we remove the redundant computation by using a graph-theoretic framework in which we find the optimal re-ordering of computations for maximal computation sharing. Second, we present the novel approach of searching for a quantization which improves the computation sharing when the frequency-domain transfer function is allowed to deviate within given bounds. A simple search scheme is presented and it is shown that, by appropriate perturbation of the filter coefficients, one can dramatically reduce the number of adders required in the filter implementation. Using these approaches, on an average, less than one adder per coefficient is required, in contrast to a full-width multiplier. Hence, the presented methodologies are a useful compliment to the existing design approaches of high-performance and low-power digital filters for future mobile computing and communication systems.
一种新型的高性能低功耗数字滤波器设计方法
提出了新颖的设计方法,可用于显著降低并行实现数字FIR滤波器的复杂性。这些方法也适用于IIR过滤器。提出了两种观点。首先,我们利用图论框架来消除冗余计算,在图论框架中我们找到了最优的计算重排序以实现最大的计算共享。其次,在允许频域传递函数在给定范围内偏离的情况下,提出了一种新的量化搜索方法,提高了计算共享性。提出了一种简单的搜索方案,并表明,通过对滤波器系数进行适当的扰动,可以显着减少滤波器实现中所需的加法器数量。使用这些方法,与全宽乘法器相比,平均每个系数需要不到一个加法器。因此,所提出的方法是对现有的高性能和低功耗数字滤波器设计方法的有益补充,用于未来的移动计算和通信系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信