Dependent Optics

Pietro Vertechi
{"title":"Dependent Optics","authors":"Pietro Vertechi","doi":"10.4204/EPTCS.380.8","DOIUrl":null,"url":null,"abstract":"A wide variety of bidirectional data accessors, ranging from mixed optics to functor lenses, can be formalized within a unique framework-dependent optics. Starting from two indexed categories, which encode what maps are allowed in the forward and backward directions, we define the category of dependent optics and establish under what assumptions it has coproducts. Different choices of indexed categories correspond to different families of optics: we discuss dependent lenses and prisms, as well as closed dependent optics. We introduce the notion of Tambara representation and use it to classify contravariant functors from the category of optics, thus generalizing the profunctor encoding of optics to the dependent case.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.380.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A wide variety of bidirectional data accessors, ranging from mixed optics to functor lenses, can be formalized within a unique framework-dependent optics. Starting from two indexed categories, which encode what maps are allowed in the forward and backward directions, we define the category of dependent optics and establish under what assumptions it has coproducts. Different choices of indexed categories correspond to different families of optics: we discuss dependent lenses and prisms, as well as closed dependent optics. We introduce the notion of Tambara representation and use it to classify contravariant functors from the category of optics, thus generalizing the profunctor encoding of optics to the dependent case.
相关的光学
各种各样的双向数据访问器,从混合光学到函子透镜,都可以在一个独特的框架依赖光学中形式化。从两个索引类别开始,它们编码了向前和向后方向上允许的映射,我们定义了依赖光学的类别,并建立了在什么假设下它有副积。不同的选择索引类别对应于不同的光学家族:我们讨论了依赖透镜和棱镜,以及闭合依赖光学。我们引入了Tambara表示的概念,并利用它对光学范畴中的逆变函子进行了分类,从而将光学的泛函子编码推广到相关情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信