{"title":"Convergence of the Allen–Cahn equation to the mean curvature flow with 90o-contact angle in 2D","authors":"H. Abels, M. Moser","doi":"10.4171/ifb/425","DOIUrl":null,"url":null,"abstract":"We consider the sharp interface limit of the Allen-Cahn equation with homogeneous Neumann boundary condition in a two-dimensional domain $\\Omega$, in the situation where an interface has developed and intersects $\\partial\\Omega$. Here a parameter $\\varepsilon>0$ in the equation, which is related to the thickness of the diffuse interface, is sent to zero. The limit problem is given by mean curvature flow with a $90$\\textdegree-contact angle condition and convergence using strong norms is shown for small times. Here we assume that a smooth solution to this limit problem exists on $[0,T]$ for some $T>0$ and that it can be parametrized suitably. With the aid of asymptotic expansions we construct an approximate solution for the Allen-Cahn equation and estimate the difference of the exact and approximate solution with the aid of a spectral estimate for the linearized Allen-Cahn operator.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/425","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
We consider the sharp interface limit of the Allen-Cahn equation with homogeneous Neumann boundary condition in a two-dimensional domain $\Omega$, in the situation where an interface has developed and intersects $\partial\Omega$. Here a parameter $\varepsilon>0$ in the equation, which is related to the thickness of the diffuse interface, is sent to zero. The limit problem is given by mean curvature flow with a $90$\textdegree-contact angle condition and convergence using strong norms is shown for small times. Here we assume that a smooth solution to this limit problem exists on $[0,T]$ for some $T>0$ and that it can be parametrized suitably. With the aid of asymptotic expansions we construct an approximate solution for the Allen-Cahn equation and estimate the difference of the exact and approximate solution with the aid of a spectral estimate for the linearized Allen-Cahn operator.
期刊介绍:
Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.