Application-Induced Cell Reliability Variability-Aware Approximate Computing in TaOx-based ReRAM Data Center Storage for Machine Learning

C. Matsui, S. Fukuyama, Atsuna Hayakawa, K. Takeuchi
{"title":"Application-Induced Cell Reliability Variability-Aware Approximate Computing in TaOx-based ReRAM Data Center Storage for Machine Learning","authors":"C. Matsui, S. Fukuyama, Atsuna Hayakawa, K. Takeuchi","doi":"10.23919/VLSIT.2019.8776565","DOIUrl":null,"url":null,"abstract":"This paper proposes Variability-Aware Approximate Computing (V-AC) for TaOx ReRAM storage at data centers. For the first time, this paper shows that application-induced variability degrades the performance. To solve this problem, V-AC utilizes error resilience of machine learning (ML) application and reduces bit-error rate (BER) of typical cells by removing extra data copy and enlarging BER difference among cells. By combining device measurement and system emulations, this paper realizes system, circuit and device codesign (SCDCD). V-AC is key enabling technology to push the limits of performance, power, chip size and scaling of ReRAM for ML. Performance, energy and cell area of ReRAM storage improves by 7.0 times, 90% and 8.5%, respectively.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"29 1","pages":"T234-T235"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes Variability-Aware Approximate Computing (V-AC) for TaOx ReRAM storage at data centers. For the first time, this paper shows that application-induced variability degrades the performance. To solve this problem, V-AC utilizes error resilience of machine learning (ML) application and reduces bit-error rate (BER) of typical cells by removing extra data copy and enlarging BER difference among cells. By combining device measurement and system emulations, this paper realizes system, circuit and device codesign (SCDCD). V-AC is key enabling technology to push the limits of performance, power, chip size and scaling of ReRAM for ML. Performance, energy and cell area of ReRAM storage improves by 7.0 times, 90% and 8.5%, respectively.
用于机器学习的基于taox的ReRAM数据中心存储的应用诱导单元可靠性可变性感知近似计算
针对数据中心的TaOx ReRAM存储,提出了一种可变性感知近似计算(V-AC)方法。本文首次表明,应用引起的可变性会降低性能。为了解决这个问题,V-AC利用机器学习(ML)应用程序的错误弹性,通过去除额外的数据副本和扩大单元之间的误码率差异来降低典型单元的误码率(BER)。通过器件测量和系统仿真相结合,实现了系统、电路和器件协同设计(SCDCD)。V-AC是一项关键的使能技术,可以突破ML中ReRAM存储的性能、功耗、芯片尺寸和扩展限制。ReRAM存储的性能、能量和单元面积分别提高了7.0倍、90%和8.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信