Qinglong Peng, Bin Tang, Jinhuan Liu, Shuang Cui, Junwei Du, Yan Lu, Feng Jiang, Xu Yu
{"title":"A Multi-Head Attention Based Dual Target Graph Collaborative Filtering Network","authors":"Qinglong Peng, Bin Tang, Jinhuan Liu, Shuang Cui, Junwei Du, Yan Lu, Feng Jiang, Xu Yu","doi":"10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00086","DOIUrl":null,"url":null,"abstract":"Recently, cross-domain collaborative filtering (CDCF) has been widely used to solve the data sparsity problem in recommendation systems. Therein, the dual-target cross-domain recommendation becomes a research hotspot, which aims to improve the recommendation performance of both target and source domains. Most existing approaches tend to use fixed weights or self-attention in a single representation space for the bi-directional inter-domain transfer of the user representation. However, a single representation space leads to limited representation capability, which makes the transfer of the user representation coarse-grained and inaccurate. In this paper, Multi-head Attention Based Dual Target Graph Collaborative Filtering Network (MA-DTGCF) is proposed. The core of the model is the bi-directional transfer graph convolution layer, consisting of a graph convolution layer and a bi-directional transfer layer based on a multi-head attention mechanism. The latter can achieve fine-grained and adaptive transfer of user features in multiple representation subspaces. It is worth noting that by stacking multiple bi-directional transfer graph convolutional layers, we can get high-order user and item features and achieve adaptive transfer of each order user features. Experimental results on three real datasets show that the proposed MA-DTGCF model significantly outperforms the state-of-the-art models in terms of HR and NDCG.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, cross-domain collaborative filtering (CDCF) has been widely used to solve the data sparsity problem in recommendation systems. Therein, the dual-target cross-domain recommendation becomes a research hotspot, which aims to improve the recommendation performance of both target and source domains. Most existing approaches tend to use fixed weights or self-attention in a single representation space for the bi-directional inter-domain transfer of the user representation. However, a single representation space leads to limited representation capability, which makes the transfer of the user representation coarse-grained and inaccurate. In this paper, Multi-head Attention Based Dual Target Graph Collaborative Filtering Network (MA-DTGCF) is proposed. The core of the model is the bi-directional transfer graph convolution layer, consisting of a graph convolution layer and a bi-directional transfer layer based on a multi-head attention mechanism. The latter can achieve fine-grained and adaptive transfer of user features in multiple representation subspaces. It is worth noting that by stacking multiple bi-directional transfer graph convolutional layers, we can get high-order user and item features and achieve adaptive transfer of each order user features. Experimental results on three real datasets show that the proposed MA-DTGCF model significantly outperforms the state-of-the-art models in terms of HR and NDCG.
期刊介绍:
The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.