{"title":"Effect of alumina and silica nanocomposite based on polyacrylamide on light and heavy oil recovery in presence of formation water using micromodel","authors":"Ashkan Maleki , Behnam Sedaee , Alireza Bahramian , Sajjad Gharechelou , Nahid Sarlak , Arash Mehdizad , Mohammad reza Rasaei , Aliakbar Dehghan","doi":"10.1016/j.petlm.2023.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing world request for energy has made oil extraction from reservoirs more desirable. Many novel EOR methods have been proposed and utilized for this purpose. Using nanocomposites in chemical flooding is one of these novel methods. In this study, we investigated the impact of six injection solutions on the recovery of light and heavy oil with the presence of two different brines as formation water using a homogenous glass micromodel. All of the injection solutions were based on a 40,000 ppm NaCl synthetic seawater (SSW), one of which was additive free and the others were prepared by dispersing nanocomposite silica-based polyacrylamide (NCSP), nanocomposite alumina-based polyacrylamide (NCAP), the combination of both nanocomposites silica and alumina based on polyacrylamide (NCSAP), surfactant (CTAB) and polyacrylamide (PAM) with a concentration of 1000 ppm as additives. The Stability of nanocomposites was tested against the salinity of the brine and temperature using salinity and DSC tests which were successful. Alongside stability tests, IFT, contact angle and oil recovery measurements were made. Visual results revealed that in addition to the effect of silica and alumina nanocomposite in reducing interfacial tension and wettability alteration, control of mobility ratio caused a major improvement in sweeping efficiency and oil recovery. According to the sweeping behavior of injected fluids, it was found that the main effect of surfactant was wettability alteration, for polyacrylamide was mobility control and for nanocomposites was the reduction of interfacial tension between oil and injected fluid, which was completely analyzed and checked out. Also, NCSAP with 95.83% and 70.33% and CTAB with 84.35% and 91% have the highest light oil recoveries at 250,000 ppm and 180,000 ppm salinity, respectively which is related to the superposition effect of interactions between nanocomposites, solution and oil. Based on our results it can be concluded that the most effective mechanism in oil recovery was IFT reduction which was done by CTAB reduction also by using a polymer-based nanocomposite such as NCSAP and adding the mobility control factor, the oil recovery can be further enhanced. In the case of heavy oil recovery, it can be concluded that the mobility control played a much more effective role when the PAM performed almost similarly to the CTAB and other nanocomposites with a recovery factor of around 17%. In this study, we tried to investigate the effect of different injection solutions and their related mechanisms on oil recovery.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000160/pdfft?md5=52d08a6534126a88ee0da4e4564101a8&pid=1-s2.0-S2405656123000160-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656123000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing world request for energy has made oil extraction from reservoirs more desirable. Many novel EOR methods have been proposed and utilized for this purpose. Using nanocomposites in chemical flooding is one of these novel methods. In this study, we investigated the impact of six injection solutions on the recovery of light and heavy oil with the presence of two different brines as formation water using a homogenous glass micromodel. All of the injection solutions were based on a 40,000 ppm NaCl synthetic seawater (SSW), one of which was additive free and the others were prepared by dispersing nanocomposite silica-based polyacrylamide (NCSP), nanocomposite alumina-based polyacrylamide (NCAP), the combination of both nanocomposites silica and alumina based on polyacrylamide (NCSAP), surfactant (CTAB) and polyacrylamide (PAM) with a concentration of 1000 ppm as additives. The Stability of nanocomposites was tested against the salinity of the brine and temperature using salinity and DSC tests which were successful. Alongside stability tests, IFT, contact angle and oil recovery measurements were made. Visual results revealed that in addition to the effect of silica and alumina nanocomposite in reducing interfacial tension and wettability alteration, control of mobility ratio caused a major improvement in sweeping efficiency and oil recovery. According to the sweeping behavior of injected fluids, it was found that the main effect of surfactant was wettability alteration, for polyacrylamide was mobility control and for nanocomposites was the reduction of interfacial tension between oil and injected fluid, which was completely analyzed and checked out. Also, NCSAP with 95.83% and 70.33% and CTAB with 84.35% and 91% have the highest light oil recoveries at 250,000 ppm and 180,000 ppm salinity, respectively which is related to the superposition effect of interactions between nanocomposites, solution and oil. Based on our results it can be concluded that the most effective mechanism in oil recovery was IFT reduction which was done by CTAB reduction also by using a polymer-based nanocomposite such as NCSAP and adding the mobility control factor, the oil recovery can be further enhanced. In the case of heavy oil recovery, it can be concluded that the mobility control played a much more effective role when the PAM performed almost similarly to the CTAB and other nanocomposites with a recovery factor of around 17%. In this study, we tried to investigate the effect of different injection solutions and their related mechanisms on oil recovery.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing