{"title":"Pyrolysis and Oxidation of Cardboard","authors":"G. Agarwal, Gang Liu, B. Lattimer","doi":"10.3801/iafss.fss.11-124","DOIUrl":null,"url":null,"abstract":"Predicting the burning of cardboard requires a detailed understanding of the pyrolysis and char oxidation. An experimental study was performed to quantify the decomposition kinetics, heat of decomposition for pyrolysis, and the heat of combustion of the evolved pyrolysis gases and char oxidation. Parameters were determined using data from a simultaneous TGA / DSC as well as the microscale combustion calorimeter. From TGA data, a double independent reaction kinetic model was sufficient to describe the decomposition of cardboard due to a softened hemicellulose peak. The heat of combustion of pyrolysis gases was a factor of two less than that of the char. However, due to the lower mass loss rate of char, the heat release rate due to the char was less than half of that associated with the evolved pyrolysis gases.","PeriodicalId":12145,"journal":{"name":"Fire Safety Science","volume":"58 1","pages":"124-137"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Science","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3801/iafss.fss.11-124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Predicting the burning of cardboard requires a detailed understanding of the pyrolysis and char oxidation. An experimental study was performed to quantify the decomposition kinetics, heat of decomposition for pyrolysis, and the heat of combustion of the evolved pyrolysis gases and char oxidation. Parameters were determined using data from a simultaneous TGA / DSC as well as the microscale combustion calorimeter. From TGA data, a double independent reaction kinetic model was sufficient to describe the decomposition of cardboard due to a softened hemicellulose peak. The heat of combustion of pyrolysis gases was a factor of two less than that of the char. However, due to the lower mass loss rate of char, the heat release rate due to the char was less than half of that associated with the evolved pyrolysis gases.