An O(n^4) time algorithm to compute the bisection width of solid grid graphs

A. Feldmann, P. Widmayer
{"title":"An O(n^4) time algorithm to compute the bisection width of solid grid graphs","authors":"A. Feldmann, P. Widmayer","doi":"10.3929/ETHZ-A-006935587","DOIUrl":null,"url":null,"abstract":"The bisection problem asks for a partition of the n vertices of a graph into two sets of size at most dn/2e, so that the number of edges connecting the two sets is minimised. A grid graph is a finite connected subgraph of the infinite two-dimensional grid. It is called solid if it has no holes. Papadimitriou and Sideri [7] gave an O(n) time algorithm to solve the bisection problem on solid grid graphs. We propose a novel approach that exploits structural properties of optimal cuts within a dynamic program. We show that our new technique leads to an O(n)","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-A-006935587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The bisection problem asks for a partition of the n vertices of a graph into two sets of size at most dn/2e, so that the number of edges connecting the two sets is minimised. A grid graph is a finite connected subgraph of the infinite two-dimensional grid. It is called solid if it has no holes. Papadimitriou and Sideri [7] gave an O(n) time algorithm to solve the bisection problem on solid grid graphs. We propose a novel approach that exploits structural properties of optimal cuts within a dynamic program. We show that our new technique leads to an O(n)
一个O(n^4)时间算法计算实体网格图的等分宽度
等分问题要求将一个图的n个顶点划分为两个大小不超过dn/2e的集合,从而使连接这两个集合的边的数量最小化。网格图是无限二维网格的有限连通子图。如果它没有孔,就称为固体。Papadimitriou和Sideri[7]给出了一个O(n)时间的算法来解决实体网格图上的等分问题。我们提出了一种新颖的方法,利用动态规划中最优切割的结构特性。我们证明我们的新技术可以产生O(n)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信