{"title":"The effect of surface treatment of silica nanoparticles on the breakdown strength of mineral oil","authors":"Huifei Jin, P. Morshuis, J. Smit, T. Andritsch","doi":"10.1109/ICDL.2014.6893073","DOIUrl":null,"url":null,"abstract":"In previous work, the results of AC breakdown tests showed that unmodified silica nanoparticles improve the breakdown strength of mineral oil based nanofluids, especially at a relatively high humidity level of around 25 ppm. It was proposed that, since the hydrophilic surface of unmodified silica nanoparticles can absorb water, this would lead to a reduction of free moisture in the bulk of the oil, which has a strong influence on the breakdown strength. In the present study this proposition is verified, by comparing the breakdown strength of two mineral oil based nanofluids: a reference with unmodified silica nanofluid and a nanofluid with Z-6011 modified silica. The silane coupling agent Z-6011 turns the surface of silica nanoparticles hydrophobic, thus preventing water adsorption.","PeriodicalId":6523,"journal":{"name":"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)","volume":"57 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2014.6893073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
In previous work, the results of AC breakdown tests showed that unmodified silica nanoparticles improve the breakdown strength of mineral oil based nanofluids, especially at a relatively high humidity level of around 25 ppm. It was proposed that, since the hydrophilic surface of unmodified silica nanoparticles can absorb water, this would lead to a reduction of free moisture in the bulk of the oil, which has a strong influence on the breakdown strength. In the present study this proposition is verified, by comparing the breakdown strength of two mineral oil based nanofluids: a reference with unmodified silica nanofluid and a nanofluid with Z-6011 modified silica. The silane coupling agent Z-6011 turns the surface of silica nanoparticles hydrophobic, thus preventing water adsorption.