The k-Total-Proper Index of Graphs

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Ying-zi Ma, Hui Zhang
{"title":"The k-Total-Proper Index of Graphs","authors":"Ying-zi Ma, Hui Zhang","doi":"10.1142/s0219265923500111","DOIUrl":null,"url":null,"abstract":"Given a set [Formula: see text] with [Formula: see text], a tree [Formula: see text] is considered as a total proper [Formula: see text]-tree or a total proper tree connecting [Formula: see text] if any two adjacent or incident elements of edges and [Formula: see text] of [Formula: see text] differ in color. Let [Formula: see text] be a connected graph of order [Formula: see text], and [Formula: see text] be an integer with [Formula: see text]. A total-colored graph is total proper[Formula: see text]-tree connected if for every set [Formula: see text] of [Formula: see text] vertices, there exists a total proper [Formula: see text]-tree in [Formula: see text]. The [Formula: see text]-total-proper index of [Formula: see text], denoted by [Formula: see text], is the minimum number of colors required to make [Formula: see text] total proper [Formula: see text]-tree connected. In this paper, we first investigate the [Formula: see text]-total-proper index of some special graphs. Moreover, we characterize the graphs with [Formula: see text]-total-proper index [Formula: see text] and [Formula: see text], respectively.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"83 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERCONNECTION NETWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265923500111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a set [Formula: see text] with [Formula: see text], a tree [Formula: see text] is considered as a total proper [Formula: see text]-tree or a total proper tree connecting [Formula: see text] if any two adjacent or incident elements of edges and [Formula: see text] of [Formula: see text] differ in color. Let [Formula: see text] be a connected graph of order [Formula: see text], and [Formula: see text] be an integer with [Formula: see text]. A total-colored graph is total proper[Formula: see text]-tree connected if for every set [Formula: see text] of [Formula: see text] vertices, there exists a total proper [Formula: see text]-tree in [Formula: see text]. The [Formula: see text]-total-proper index of [Formula: see text], denoted by [Formula: see text], is the minimum number of colors required to make [Formula: see text] total proper [Formula: see text]-tree connected. In this paper, we first investigate the [Formula: see text]-total-proper index of some special graphs. Moreover, we characterize the graphs with [Formula: see text]-total-proper index [Formula: see text] and [Formula: see text], respectively.
图的k-全固有索引
给定一个集[公式:见文]和[公式:见文],如果[公式:见文]的边和[公式:见文]的[公式:见文]的[相邻或相关元素]中有任何两个颜色不同,则树[公式:见文]被认为是一个总固有树[公式:见文]或连接[公式:见文]的总固有树。设[公式:见文]为有序的连通图[公式:见文],[公式:见文]为带[公式:见文]的整数。如果对于[公式:见文本]顶点的每一组[公式:见文本],在[公式:见文本]中存在一个总固有[公式:见文本]-树,则全彩色图为总固有[公式:见文本]-树连通。[公式:见文]的[公式:见文]-total-proper索引,用[公式:见文]表示,是使[公式:见文]总proper[公式:见文]-树连通所需的最小颜色数。本文首先研究了一些特殊图的[公式:见文]-全-固有索引。此外,我们分别用[公式:见文]-total-proper index[公式:见文]和[公式:见文]来表征图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JOURNAL OF INTERCONNECTION NETWORKS
JOURNAL OF INTERCONNECTION NETWORKS COMPUTER SCIENCE, THEORY & METHODS-
自引率
14.30%
发文量
121
期刊介绍: The Journal of Interconnection Networks (JOIN) is an international scientific journal dedicated to advancing the state-of-the-art of interconnection networks. The journal addresses all aspects of interconnection networks including their theory, analysis, design, implementation and application, and corresponding issues of communication, computing and function arising from (or applied to) a variety of multifaceted networks. Interconnection problems occur at different levels in the hardware and software design of communicating entities in integrated circuits, multiprocessors, multicomputers, and communication networks as diverse as telephone systems, cable network systems, computer networks, mobile communication networks, satellite network systems, the Internet and biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信