Least squares realization of LTI models is an eigenvalue problem

B. Moor
{"title":"Least squares realization of LTI models is an eigenvalue problem","authors":"B. Moor","doi":"10.23919/ECC.2019.8795987","DOIUrl":null,"url":null,"abstract":"We show how least squares optimal realization of autonomous linear time-invariant dynamical systems from given data, reduces to the solution of an eigenvalue problem. In this short paper, we can only schematically sketch the different steps: The first order optimality conditions result in a multi-parameter eigenvalue problem. The eigenvalue $n$ -tuples are calculated from the null space of a quasi-Toeplitz block Macaulay matrix, which is shown to be multishift-invariant. This last property is then exploited via nD ‘exact’ realization theory, leading through several eigenvalue problems to the optimal model parameters.","PeriodicalId":72704,"journal":{"name":"Control Conference (ECC) ... European. European Control Conference","volume":"64 1","pages":"2270-2275"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Conference (ECC) ... European. European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2019.8795987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We show how least squares optimal realization of autonomous linear time-invariant dynamical systems from given data, reduces to the solution of an eigenvalue problem. In this short paper, we can only schematically sketch the different steps: The first order optimality conditions result in a multi-parameter eigenvalue problem. The eigenvalue $n$ -tuples are calculated from the null space of a quasi-Toeplitz block Macaulay matrix, which is shown to be multishift-invariant. This last property is then exploited via nD ‘exact’ realization theory, leading through several eigenvalue problems to the optimal model parameters.
LTI模型的最小二乘实现是一个特征值问题
我们展示了如何从给定数据的最小二乘最优实现自治线性定常动力系统,简化为特征值问题的解。在这篇简短的文章中,我们只能粗略地描述不同的步骤:一阶最优性条件导致多参数特征值问题。从准toeplitz块Macaulay矩阵的零空间计算特征值$n$元组,该矩阵被证明是多移不变的。然后通过nD“精确”实现理论利用最后一个属性,通过几个特征值问题得到最优模型参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信