Semantic Segmentation of RGBD Images with Mutex Constraints

Zhuo Deng, S. Todorovic, Longin Jan Latecki
{"title":"Semantic Segmentation of RGBD Images with Mutex Constraints","authors":"Zhuo Deng, S. Todorovic, Longin Jan Latecki","doi":"10.1109/ICCV.2015.202","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of semantic scene segmentation of RGB-D images of indoor scenes. We propose a novel image region labeling method which augments CRF formulation with hard mutual exclusion (mutex) constraints. This way our approach can make use of rich and accurate 3D geometric structure coming from Kinect in a principled manner. The final labeling result must satisfy all mutex constraints, which allows us to eliminate configurations that violate common sense physics laws like placing a floor above a night stand. Three classes of mutex constraints are proposed: global object co-occurrence constraint, relative height relationship constraint, and local support relationship constraint. We evaluate our approach on the NYU-Depth V2 dataset, which consists of 1449 cluttered indoor scenes, and also test generalization of our model trained on NYU-Depth V2 dataset directly on a recent SUN3D dataset without any new training. The experimental results show that we significantly outperform the state-of-the-art methods in scene labeling on both datasets.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"60 1","pages":"1733-1741"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

In this paper, we address the problem of semantic scene segmentation of RGB-D images of indoor scenes. We propose a novel image region labeling method which augments CRF formulation with hard mutual exclusion (mutex) constraints. This way our approach can make use of rich and accurate 3D geometric structure coming from Kinect in a principled manner. The final labeling result must satisfy all mutex constraints, which allows us to eliminate configurations that violate common sense physics laws like placing a floor above a night stand. Three classes of mutex constraints are proposed: global object co-occurrence constraint, relative height relationship constraint, and local support relationship constraint. We evaluate our approach on the NYU-Depth V2 dataset, which consists of 1449 cluttered indoor scenes, and also test generalization of our model trained on NYU-Depth V2 dataset directly on a recent SUN3D dataset without any new training. The experimental results show that we significantly outperform the state-of-the-art methods in scene labeling on both datasets.
基于互斥锁约束的RGBD图像语义分割
本文研究了室内场景RGB-D图像的语义场景分割问题。我们提出了一种新的图像区域标记方法,该方法增强了带有硬互斥约束的CRF公式。这样我们的方法就可以利用Kinect丰富而精确的3D几何结构。最终的标记结果必须满足所有互斥锁约束,这使我们能够消除违反常识性物理定律的配置,例如将地板放在床头柜上方。提出了三种类型的互斥约束:全局对象共现约束、相对高度关系约束和局部支持关系约束。我们在NYU-Depth V2数据集上评估了我们的方法,该数据集由1449个杂乱的室内场景组成,并且直接在最近的SUN3D数据集上测试了我们在NYU-Depth V2数据集上训练的模型的泛化性,而不需要任何新的训练。实验结果表明,我们在两个数据集上的场景标记明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信