Bi-SAN-CAP: Bi-Directional Self-Attention for Image Captioning

Md. Zakir Hossain, F. Sohel, M. F. Shiratuddin, Hamid Laga, Bennamoun
{"title":"Bi-SAN-CAP: Bi-Directional Self-Attention for Image Captioning","authors":"Md. Zakir Hossain, F. Sohel, M. F. Shiratuddin, Hamid Laga, Bennamoun","doi":"10.1109/DICTA47822.2019.8946003","DOIUrl":null,"url":null,"abstract":"In a typical image captioning pipeline, a Convolutional Neural Network (CNN) is used as the image encoder and Long Short-Term Memory (LSTM) as the language decoder. LSTM with attention mechanism has shown remarkable performance on sequential data including image captioning. LSTM can retain long-range dependency of sequential data. However, it is hard to parallelize the computations of LSTM because of its inherent sequential characteristics. In order to address this issue, recent works have shown benefits in using self-attention, which is highly parallelizable without requiring any temporal dependencies. However, existing techniques apply attention only in one direction to compute the context of the words. We propose an attention mechanism called Bi-directional Self-Attention (Bi-SAN) for image captioning. It computes attention both in forward and backward directions. It achieves high performance comparable to state-of-the-art methods.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"12 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8946003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In a typical image captioning pipeline, a Convolutional Neural Network (CNN) is used as the image encoder and Long Short-Term Memory (LSTM) as the language decoder. LSTM with attention mechanism has shown remarkable performance on sequential data including image captioning. LSTM can retain long-range dependency of sequential data. However, it is hard to parallelize the computations of LSTM because of its inherent sequential characteristics. In order to address this issue, recent works have shown benefits in using self-attention, which is highly parallelizable without requiring any temporal dependencies. However, existing techniques apply attention only in one direction to compute the context of the words. We propose an attention mechanism called Bi-directional Self-Attention (Bi-SAN) for image captioning. It computes attention both in forward and backward directions. It achieves high performance comparable to state-of-the-art methods.
Bi-SAN-CAP:图像标题的双向自注意
在典型的图像字幕管道中,使用卷积神经网络(CNN)作为图像编码器,使用长短期记忆(LSTM)作为语言解码器。具有注意机制的LSTM在包括图像字幕在内的序列数据上表现出了显著的性能。LSTM可以保留序列数据的长期依赖关系。然而,由于LSTM固有的序列特性,其计算难以并行化。为了解决这个问题,最近的研究显示了使用自我关注的好处,它是高度并行化的,不需要任何时间依赖性。然而,现有的技术只在一个方向上应用注意力来计算单词的上下文。我们提出了一种称为双向自注意(Bi-SAN)的图像字幕注意机制。它计算向前和向后方向的注意力。它实现了与最先进的方法相媲美的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信