BoolSurf: Boolean Operations on Surfaces

Marzia Riso, Giacomo Nazzaro, E. Puppo, Alec Jacobson, Qingnan Zhou, F. Pellacini
{"title":"BoolSurf: Boolean Operations on Surfaces","authors":"Marzia Riso, Giacomo Nazzaro, E. Puppo, Alec Jacobson, Qingnan Zhou, F. Pellacini","doi":"10.1145/3550454.3555466","DOIUrl":null,"url":null,"abstract":"We port Boolean set operations between 2D shapes to surfaces of any genus, with any number of open boundaries. We combine shapes bounded by sets of freely intersecting loops, consisting of geodesic lines and cubic Bézier splines lying on a surface. We compute the arrangement of shapes directly on the surface and assign integer labels to the cells of such arrangement. Differently from the Euclidean case, some arrangements on a manifold may be inconsistent. We detect inconsistent arrangements and help the user to resolve them. Also, we extend to the manifold setting recent work on Boundary-Sampled Halfspaces, thus supporting operations more general than standard Booleans, which are well defined on inconsistent arrangements, too. Our implementation discretizes the input shapes into polylines at an arbitrary resolution, independent of the level of resolution of the underlying mesh. We resolve the arrangement inside each triangle of the mesh independently and combine the results to reconstruct both the boundaries and the interior of each cell in the arrangement. We reconstruct the control points of curves bounding cells, in order to free the result from discretization and provide an output in vector format. We support interactive usage, editing shapes consisting up to 100k line segments on meshes of up to 1M triangles.","PeriodicalId":7121,"journal":{"name":"ACM Trans. Graph.","volume":"7 1","pages":"1 - 13"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3550454.3555466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We port Boolean set operations between 2D shapes to surfaces of any genus, with any number of open boundaries. We combine shapes bounded by sets of freely intersecting loops, consisting of geodesic lines and cubic Bézier splines lying on a surface. We compute the arrangement of shapes directly on the surface and assign integer labels to the cells of such arrangement. Differently from the Euclidean case, some arrangements on a manifold may be inconsistent. We detect inconsistent arrangements and help the user to resolve them. Also, we extend to the manifold setting recent work on Boundary-Sampled Halfspaces, thus supporting operations more general than standard Booleans, which are well defined on inconsistent arrangements, too. Our implementation discretizes the input shapes into polylines at an arbitrary resolution, independent of the level of resolution of the underlying mesh. We resolve the arrangement inside each triangle of the mesh independently and combine the results to reconstruct both the boundaries and the interior of each cell in the arrangement. We reconstruct the control points of curves bounding cells, in order to free the result from discretization and provide an output in vector format. We support interactive usage, editing shapes consisting up to 100k line segments on meshes of up to 1M triangles.
BoolSurf:表面上的布尔运算
我们将二维形状之间的布尔集合操作移植到任意曲面上
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信