The Effect of Nanofiller And Temperature on Dielectric Properties of Polypropylene-Based Dielectric Material

H. Santoso, A. Cavallini, Suwarno
{"title":"The Effect of Nanofiller And Temperature on Dielectric Properties of Polypropylene-Based Dielectric Material","authors":"H. Santoso, A. Cavallini, Suwarno","doi":"10.1109/PECon48942.2020.9314466","DOIUrl":null,"url":null,"abstract":"In this paper, the dielectric properties of five HVDC cable-grade polypropylene (PP)-based dielectric materials are discussed. Two type of nanofiller, codename N1 and N2, with different weight percentages (% wt), were considered. Breakdown strength, temperature-dependent dissipation factor, dielectric constant, and space charge behavior were measured to characterize the materials. It is found that the addition of nanofiller could increase DC breakdown strength. Temperature-dependent dissipation factor on filled samples is slightly higher than unfilled sample but still below 0.4% at 200 C. 1% wt N1-filled samples shows slightly higher dielectric constant than unfilled sample, while as wt is increased to 2% it becomes slightly lower than unfilled sample. 1% wt N2-filled samples shows slightly lower dielectric constant than unfilled sample. Space charge injection threshold of 1% N1-filled samples is slightly higher than unfilled ones, while the accumulated charge is strongly dependent on the electric field applied. At 50 kV/mm electric field of weight percentages of N1 and the addition of N2 filler could decrease space charge accumulation, lower than the unfilled sample.","PeriodicalId":6768,"journal":{"name":"2020 IEEE International Conference on Power and Energy (PECon)","volume":"11 1","pages":"371-375"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Power and Energy (PECon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECon48942.2020.9314466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the dielectric properties of five HVDC cable-grade polypropylene (PP)-based dielectric materials are discussed. Two type of nanofiller, codename N1 and N2, with different weight percentages (% wt), were considered. Breakdown strength, temperature-dependent dissipation factor, dielectric constant, and space charge behavior were measured to characterize the materials. It is found that the addition of nanofiller could increase DC breakdown strength. Temperature-dependent dissipation factor on filled samples is slightly higher than unfilled sample but still below 0.4% at 200 C. 1% wt N1-filled samples shows slightly higher dielectric constant than unfilled sample, while as wt is increased to 2% it becomes slightly lower than unfilled sample. 1% wt N2-filled samples shows slightly lower dielectric constant than unfilled sample. Space charge injection threshold of 1% N1-filled samples is slightly higher than unfilled ones, while the accumulated charge is strongly dependent on the electric field applied. At 50 kV/mm electric field of weight percentages of N1 and the addition of N2 filler could decrease space charge accumulation, lower than the unfilled sample.
纳米填料和温度对聚丙烯基介电材料介电性能的影响
本文讨论了五种高压直流电缆级聚丙烯基介电材料的介电性能。研究了两种不同重量百分比(% wt)的纳米填充剂,代号N1和N2。通过测量击穿强度、温度相关耗散系数、介电常数和空间电荷行为来表征材料。结果表明,纳米填料的加入可以提高材料的直流击穿强度。填充样品的温度相关耗散系数略高于未填充样品,但在200℃时仍低于0.4%。1% wt n1填充样品的介电常数略高于未填充样品,而当wt增加到2%时,介电常数略低于未填充样品。1% wt氮气填充样品的介电常数略低于未填充样品。1% n1填充样品的空间电荷注入阈值略高于未填充样品,而累积电荷与施加的电场有很强的依赖性。在50 kV/mm电场条件下,掺量N1和添加N2填料均能降低样品的空间电荷积累,且低于未填充样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信