{"title":"Navigating the Turbulent Waters of School Reform Guided by Complexity Theory.","authors":"D. G. White, J. Levin","doi":"10.29173/CMPLCT24566","DOIUrl":null,"url":null,"abstract":"The goal of this research study has been to develop, implement, and evaluate a school reform design experiment at a continuation high school with low-income, low-performing underrepresented minority students. The complexity sciences served as a theoretical framework for this design experiment. Treating an innovative college preparatory program as a nested complex adaptive system within a larger complex adaptive system, the school, we used features of complex adaptive systems (equilibrium, emergence, self-organization, and feedback loops) as a framework to design a strategy for school reform. The goal was to create an environment for change by pulling the school far from equilibrium using a strategy we call “purposeful perturbations” to disrupt the stable state of the school in a purposeful way. Over the four years of the study, several tipping points were reached, and we developed agent-based simulation models that capture important dynamic properties of the reform at these points. The study draws upon complexity theory in multiple ways that have supported improved education for low-achieving students.","PeriodicalId":43228,"journal":{"name":"Complicity-An International Journal of Complexity and Education","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complicity-An International Journal of Complexity and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29173/CMPLCT24566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The goal of this research study has been to develop, implement, and evaluate a school reform design experiment at a continuation high school with low-income, low-performing underrepresented minority students. The complexity sciences served as a theoretical framework for this design experiment. Treating an innovative college preparatory program as a nested complex adaptive system within a larger complex adaptive system, the school, we used features of complex adaptive systems (equilibrium, emergence, self-organization, and feedback loops) as a framework to design a strategy for school reform. The goal was to create an environment for change by pulling the school far from equilibrium using a strategy we call “purposeful perturbations” to disrupt the stable state of the school in a purposeful way. Over the four years of the study, several tipping points were reached, and we developed agent-based simulation models that capture important dynamic properties of the reform at these points. The study draws upon complexity theory in multiple ways that have supported improved education for low-achieving students.